scholarly journals Empagliflozin Lowers Mitochondrial Respiration and Skeletal Muscle Sphingolipid Content in Female Mice Fed Western Diet

2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Erin McGowan ◽  
Philip Batterson ◽  
Matthew Robinson ◽  
Sean Newsom
2019 ◽  
Vol 149 (9) ◽  
pp. 1493-1502 ◽  
Author(s):  
Jenny L Gonzalez-Armenta ◽  
Zhengrong Gao ◽  
Susan E Appt ◽  
Mara Z Vitolins ◽  
Kristofer T Michalson ◽  
...  

ABSTRACT Background Western diets are associated with increased incidences of obesity, hypertension, diabetes, and hypercholesterolemia, whereas Mediterranean diets, richer in polyphenols, monounsaturated fats, fruits, vegetables, poultry, and fish, appear to have cardiometabolic health benefits. Previous work has included population-based studies with limited evidence for causation or animal studies focused on single macro- or micronutrients; therefore, primate animal models provide an opportunity to determine potential mechanisms underlying the effects of dietary patterns on health and disease. Objective The aim of this study was to determine the effects of whole dietary patterns, either a Western or Mediterranean diet, on skeletal muscle mitochondrial bioenergetics in cynomolgus macaques. Methods In this study, 22 adult female cynomolgus macaques (∼11–14 y by dentition) were fed either a Western or Mediterranean diet for 30 mo. The Western diet was designed to mimic the diet of a middle-aged American woman and the Mediterranean diet included key aspects of Mediterranean diets studied in humans, such as plant-based proteins and fat, complex carbohydrates, and fiber. Diets were matched on macronutrient composition (16% protein, 54% carbohydrate, and 31% fat) and cholesterol content. Skeletal muscle was collected for high-resolution respirometry, citrate synthase activity, and western blot measurements. Pearson correlation analysis between respirometry measures and measures of carbohydrate metabolism was also performed. Results We found that consumption of a Western diet resulted in significantly higher mitochondrial respiration with fatty acid oxidation (FAO) (53%), FAO + complex I (52%), complex I + II (31%), max electron transport system (ETS) (31%), and ETS rotenone sensitive (31%) than did consumption of a Mediterranean diet. In addition, measures of respiration in response to fatty acids were significantly and positively correlated with both insulin resistance and plasma insulin concentrations. Conclusions This study highlights the importance of dietary composition in mitochondrial bioenergetics and that diet can influence skeletal muscle mitochondrial respiration independently of other factors such as macronutrient composition.


2021 ◽  
pp. 1-34
Author(s):  
Hamidie Ronald D Ray ◽  
Tsubasa Shibaguchi ◽  
Tatsuya Yamada ◽  
Rikuhide Koma ◽  
Rie Ishizawa ◽  
...  

Abstract Background: Previous research has suggested that curcumin potentially induces mitochondrial biogenesis in skeletal muscle via increasing cAMP levels. However, the regulatory mechanisms for this phenomenon remain unknown. The purpose of the present study was to clarify the mechanism by which curcumin activates cAMP-related signalling pathways that upregulate mitochondrial biogenesis and respiration in skeletal muscle. Methods: The effect of curcumin treatment (i.p., 100 mg/kg-BW/day for 28 days) on mitochondrial biogenesis was determined in rats. The effects of curcumin and exercise (swimming for 2 h/day for 3 days) on the cAMP signalling pathway were determined in the absence and presence of phosphodiesterase (PDE) or protein kinase A (PKA) inhibitors. Mitochondrial respiration, citrate synthase (CS) activity, cAMP content, and protein expression of cAMP/PKA signalling molecules were analysed. Results: Curcumin administration increased COX-IV protein expression, and CS and complex I activity, consistent with the induction of mitochondrial biogenesis by curcumin. Mitochondrial respiration was not altered by curcumin treatment. Curcumin and PDE inhibition tended to increase cAMP levels with or without exercise. In addition, exercise increased the phosphorylation of PDE4A, whereas curcumin treatment strongly inhibited PDE4A phosphorylation regardless of exercise. Furthermore, curcumin promoted AMPK phosphorylation and PGC-1α deacetylation. Inhibition of PKA abolished the phosphorylation of AMPK. Conclusion: The present results suggest that curcumin increases cAMP levels via inhibition of PDE4A phosphorylation, which induces mitochondrial biogenesis through a cAMP/PKA/AMPK signalling pathway. Our data also suggest the possibility that curcumin utilizes a regulatory mechanism for mitochondrial biogenesis that is distinct from the exercise-induced mechanism in skeletal muscle.


2008 ◽  
Vol 294 (1) ◽  
pp. E97-E102 ◽  
Author(s):  
Audrey E. Brown ◽  
Matthias Elstner ◽  
Stephen J. Yeaman ◽  
Douglass M. Turnbull ◽  
Mark Walker

Insulin-resistant type 2 diabetic patients have been reported to have impaired skeletal muscle mitochondrial respiratory function. A key question is whether decreased mitochondrial respiration contributes directly to the decreased insulin action. To address this, a model of impaired cellular respiratory function was established by incubating human skeletal muscle cell cultures with the mitochondrial inhibitor sodium azide and examining the effects on insulin action. Incubation of human skeletal muscle cells with 50 and 75 μM azide resulted in 48 ± 3% and 56 ± 1% decreases, respectively, in respiration compared with untreated cells mimicking the level of impairment seen in type 2 diabetes. Under conditions of decreased respiratory chain function, insulin-independent (basal) glucose uptake was significantly increased. Basal glucose uptake was 325 ± 39 pmol/min/mg (mean ± SE) in untreated cells. This increased to 669 ± 69 and 823 ± 83 pmol/min/mg in cells treated with 50 and 75 μM azide, respectively (vs. untreated, both P < 0.0001). Azide treatment was also accompanied by an increase in basal glycogen synthesis and phosphorylation of AMP-activated protein kinase. However, there was no decrease in glucose uptake following insulin exposure, and insulin-stimulated phosphorylation of Akt was normal under these conditions. GLUT1 mRNA expression remained unchanged, whereas GLUT4 mRNA expression increased following azide treatment. In conclusion, under conditions of impaired mitochondrial respiration there was no evidence of impaired insulin signaling or glucose uptake following insulin exposure in this model system.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Victor Jeger ◽  
Sebastian Brandt ◽  
Francesca Porta ◽  
Stephan M. Jakob ◽  
Jukka Takala ◽  
...  

Introduction.Results on mitochondrial dysfunction in sepsis are controversial. We aimed to assess effects of LPS at wide dose and time ranges on hepatocytes and isolated skeletal muscle mitochondria.Methods.Human hepatocellular carcinoma cells (HepG2) were exposed to placebo or LPS (0.1, 1, and 10 μg/mL) for 4, 8, 16, and 24 hours and primary human hepatocytes to 1 μg/mL LPS or placebo (4, 8, and 16 hours). Mitochondria from porcine skeletal muscle samples were exposed to increasing doses of LPS (0.1–100 μg/mg) for 2 and 4 hours. Respiration rates of intact and permeabilized cells and isolated mitochondria were measured by high-resolution respirometry.Results.In HepG2 cells, LPS reduced mitochondrial membrane potential and cellular ATP content but did not modify basal respiration. Stimulated complex II respiration was reduced time-dependently using 1 μg/mL LPS. In primary human hepatocytes, stimulated mitochondrial complex II respiration was reduced time-dependently using 1 μg/mL LPS. In isolated porcine skeletal muscle mitochondria, stimulated respiration decreased at high doses (50 and 100 μg/mL LPS).Conclusion.LPS reduced cellular ATP content of HepG2 cells, most likely as a result of the induced decrease in membrane potential. LPS decreased cellular and isolated mitochondrial respiration in a time-dependent, dose-dependent and complex-dependent manner.


2017 ◽  
Vol 123 (6) ◽  
pp. 1516-1524 ◽  
Author(s):  
Adam R. Konopka ◽  
William M. Castor ◽  
Christopher A. Wolff ◽  
Robert V. Musci ◽  
Justin J. Reid ◽  
...  

The 2016 Colorado Trail Race (CTR) was an ultra-endurance mountain bike race in which competitors cycled for up to 24 h/day between altitudes of 1,675 and 4,025 m to complete 800 km and 21,000 m of elevation gain. In one athlete, we had the unique opportunity to characterize skeletal muscle protein synthesis and mitochondrial respiration in response to a normal activity control period (CON) and the CTR. We hypothesized that mitochondrial protein synthesis would be elevated and mitochondrial respiration would be maintained during the extreme stresses of the CTR. Titrated and bolus doses of ADP were provided to determine substrate-specific oxidative phosphorylation (OXPHOS) and electron transport system (ETS) capacities in permeabilized muscle fibers via high-resolution respirometry. Protein synthetic rates were determined by daily oral consumption of deuterium oxide (2H2O). The endurance athlete had OXPHOS (226 pmol·s−1·mg tissue−1) and ETS (231 pmol·s−1·mg tissue−1) capacities that rank among the highest published to date in humans. Mitochondrial (3.2-fold), cytoplasmic (2.3-fold), and myofibrillar (1.5-fold) protein synthesis rates were greater during CTR compared with CON. With titrated ADP doses, the apparent Km of ADP, OXPHOS, and ETS increased after the CTR. With provision of ADP boluses after the CTR, the addition of fatty acids (−12 and −14%) mitigated the decline in OXPHOS and ETS capacity during carbohydrate-supported respiration (−26 and −31%). In the face of extreme stresses during the CTR, elevated rates of mitochondrial protein synthesis may contribute to rapid adaptations in mitochondrial bioenergetics. NEW & NOTEWORTHY The mechanisms that maintain skeletal muscle function during extreme stresses remain incompletely understood. In the current study, greater rates of mitochondrial protein synthesis during the energetic demands of ultra-endurance exercise may contribute to rapid adaptations in mitochondrial bioenergetics. The endurance athlete herein achieved mitochondrial respiratory capacities among the highest published for humans. Greater mitochondrial protein synthesis during ultra-endurance exercise may contribute to improved mitochondrial respiration and serve as a mechanism to resist cellular energetic stresses.


2020 ◽  
Author(s):  
Nicholas D. LeBlond ◽  
Peyman Ghorbani ◽  
Conor O’Dwyer ◽  
Nia Ambursley ◽  
Julia R. C. Nunes ◽  
...  

AbstractObjectiveThe dysregulation of myeloid-derived cell metabolism can drive atherosclerosis. AMP-activated protein kinase (AMPK) controls various aspects of macrophage dynamics and lipid homeostasis, which are important during atherogenesis.Approach and ResultsWe aimed to clarify the role of myeloid-specific AMPK signaling by using LysM-Cre to drive the deletion of both the α1 and α2 catalytic subunits (MacKO), in male and female mice made acutely atherosclerotic by PCSK9-AAV and Western diet-feeding. After 6 weeks of Western diet feeding, half received daily injection of either the AMPK activator, A-769662 or a vehicle control for a further 6 weeks. After 12 weeks, myeloid cell populations were not different between genotype or sex. Similarly, aortic sinus plaque size, lipid staining and necrotic area were not different in male and female MacKO mice compared to their littermate floxed controls. Moreover, therapeutic intervention with A-769662 had no effect. There were no differences in the amount of circulating total cholesterol or triglyceride, and only minor differences in the levels of inflammatory cytokines between groups. Finally, CD68+ area or markers of autophagy showed no effect of either lacking AMPK signaling or systemic AMPK activation.ConclusionsOur data suggest that while defined roles for each catalytic AMPK subunit have been identified, global deletion of myeloid AMPK signaling does not significantly impact atherosclerosis. Moreover, we show that intervention with the first-generation AMPK activator, A-769662, was not able to stem the progression of atherosclerosis.Highlights- The deletion of both catalytic subunits of AMPK in myeloid cells has no significant effect on the progression of atherosclerosis in either male or female mice- Therapeutic delivery of a first-generation AMPK activator (A-769662) for the last 6 weeks of 12-week study had no beneficial effect in either male or female mice- Studying total AMPK deletion may mask specific effects of each isoform and highlights the need for targeted disruption of AMPK phosphorylation sites via knock-in mutations, rather than the traditional “sledgehammer” knockout approach


2021 ◽  
pp. 111579
Author(s):  
Christian J. Elliehausen ◽  
Dennis M. Minton ◽  
Alexander D. Nichol ◽  
Adam R. Konopka

Sign in / Sign up

Export Citation Format

Share Document