scholarly journals Role of type I interferon in the Theiler's virus‐induced encephalitis, cellular infiltration to the CNS and function of immune cells

2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
YOUNG‐HEE JIN ◽  
Wanqiu Hou ◽  
Alyson C. Fuller ◽  
Bongsu Kang ◽  
Byung S. Kim
2010 ◽  
Vol 226 (1-2) ◽  
pp. 27-37 ◽  
Author(s):  
Young-Hee Jin ◽  
Wanqiu Hou ◽  
Seung Jae Kim ◽  
Alyson C. Fuller ◽  
Bongsu Kang ◽  
...  

2020 ◽  
Vol 21 (23) ◽  
pp. 9247
Author(s):  
Steffen K. Meurer ◽  
Ralf Weiskirchen

Transforming growth factor-β1 (TGF-β1) is a pleiotropic factor sensed by most cells. It regulates a broad spectrum of cellular responses including hematopoiesis. In order to process TGF-β1-responses in time and space in an appropriate manner, there is a tight regulation of its signaling at diverse steps. The downstream signaling is mediated by type I and type II receptors and modulated by the ‘accessory’ receptor Endoglin also termed cluster of differentiation 105 (CD105). Endoglin was initially identified on pre-B leukemia cells but has received most attention due to its high expression on activated endothelial cells. In turn, Endoglin has been figured out as the causative factor for diseases associated with vascular dysfunction like hereditary hemorrhagic telangiectasia-1 (HHT-1), pre-eclampsia, and intrauterine growth restriction (IUPR). Because HHT patients often show signs of inflammation at vascular lesions, and loss of Endoglin in the myeloid lineage leads to spontaneous inflammation, it is speculated that Endoglin impacts inflammatory processes. In line, Endoglin is expressed on progenitor/precursor cells during hematopoiesis as well as on mature, differentiated cells of the innate and adaptive immune system. However, so far only pro-monocytes and macrophages have been in the focus of research, although Endoglin has been identified in many other immune system cell subsets. These findings imply a functional role of Endoglin in the maturation and function of immune cells. Aside the functional relevance of Endoglin in endothelial cells, CD105 is differentially expressed during hematopoiesis, arguing for a role of this receptor in the development of individual cell lineages. In addition, Endoglin expression is present on mature immune cells of the innate (i.e., macrophages and mast cells) and the adaptive (i.e., T-cells) immune system, further suggesting Endoglin as a factor that shapes immune responses. In this review, we summarize current knowledge on Endoglin expression and function in hematopoietic precursors and mature hematopoietic cells of different lineages.


2021 ◽  
Vol 1 (1) ◽  
pp. 49-59
Author(s):  
Selvakumar Subbian

The Coronavirus Disease-2019 (COVID-19) pandemic, caused by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has claimed 1.2 million people globally since December 2019. Although the host factors underpinning COVID-19 pathology are not fully understood, type I interferon (IFN-I) response is considered crucial for SARS-CoV-2 pathogenesis. Perturbations in IFN-I signaling and associated interferon-inducible genes (ISG) are among the primary disease severity indicators in COVID-19. Consequently, IFN-I therapy, either alone or in- combination with existing antiviral or anti-inflammatory drugs, is tested in many ongoing clinical trials to reduce COVID-19 mortality. Since signaling by the IFN-I family of molecules regulates host immune response to other infectious and non-infectious diseases, any imbalance in this family of cytokines would impact the clinical outcome of COVID-19, as well as other co-existing diseases. Therefore, it is imperative to evaluate the beneficial-versus-detrimental effects of IFN-I immunotherapy for COVID-19 patients with divergent disease severity and other co-existing conditions. This review article summarizes the role of IFN-I signaling in infectious and non-infectious diseases of humans. It highlights the precautionary measures to be considered before administering IFN-I to COVID-19 patients having other co-existing disorders. Finally, suggestions are proposed to improve IFN-I immunotherapy to COVID-19.


2018 ◽  
Vol 9 ◽  
Author(s):  
Ahmed Outlioua ◽  
Marie Pourcelot ◽  
Damien Arnoult

2015 ◽  
Vol 11 (8) ◽  
pp. e1005084 ◽  
Author(s):  
Karoly Toth ◽  
Sang R. Lee ◽  
Baoling Ying ◽  
Jacqueline F. Spencer ◽  
Ann E. Tollefson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document