Role of MAP‐kinase, Rho GTPases and actomyosin contractility in endothelial cell migration and vessel establishment

2008 ◽  
Vol 22 (S2) ◽  
pp. 611-611
Author(s):  
Georgia Mavria ◽  
Sabu Abraham ◽  
Maggie Yeo ◽  
Christopher J Marshall
2015 ◽  
Author(s):  
Zhiping Yan ◽  
Jingxia Liu ◽  
Linshen Xie ◽  
Xiaoheng Liu ◽  
Ye Zeng

Several positively charged epitopes on the surface of CXCL8 involved in the binding of the major components of endothelial glycocalyx, sulfated glycosaminoglycans (GAGs).In the present study, we aimed to test the hypothesis that the surface GAGs — heparan sulfate (HS) is a crucial prerequisite for enhancement of endothelial cell migration by CXCL8, and to explore its underlying mechanism by detecting the changes in expression of Rho-GTPases and in the organization of actin cytoskeleton after enzymatic removal of HS on human umbilical vein endothelial cells (HUVECs) by using heparinase III.Our results revealed that the reduction of wound area by CXCL8 was greatly attenuated by removal of HS. The upregulations of Rho-GTPases, including Cdc42, Rac1, and RhoA by CXCL8 were suppressed by removal of HS . The polymerization and polarization of actin cytoskeleton, and the increasing of stress fibers by CXCL8 were also abolished by heparinase III. Taken together, our results demonstrated an essential role of HS in mediating CXCL8-induced endothelial cell migration, and highlighted the biological relevance of the CXCL8 and GAGs interactions in endothelial cell migration.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1669 ◽  
Author(s):  
Zhiping Yan ◽  
Jingxia Liu ◽  
Linshen Xie ◽  
Xiaoheng Liu ◽  
Ye Zeng

CXCL8 (Interleukin-8, IL-8) plays an important role in angiogenesis and wound healing by prompting endothelial cell migration. It has been suggested that heparan sulfate (HS) could provide binding sites on endothelial cells to retain and activate highly diffusible cytokines and inflammatory chemokines. In the present study, we aimed to test the hypothesis that HS is essential for enhancement of endothelial cell migration by CXCL8, and to explore the underlying mechanism by detecting the changes in expression and activity of Rho GTPases and in the organization of actin cytoskeleton after enzymatic removal of HS on human umbilical vein endothelial cells (HUVECs) by using heparinase III. Our results revealed that the wound healing induced by CXCL8 was greatly attenuated by removal of HS. The CXCL8-upregulated Rho GTPases including Cdc42, Rac1, and RhoA, and CXCL8-increased Rac1/Rho activity were suppressed by removal of HS. The polymerization and polarization of actin cytoskeleton, and the increasing of stress fibers induced by CXCL8 were also abolished by heparinase III. Taken together, our results demonstrated an essential role of HS in mediating CXCL8-induced endothelial cell migration, and highlighted the biological importance of the interaction between CXCL8 and heparan sulfate in wound healing.


2015 ◽  
Author(s):  
Zhiping Yan ◽  
Jingxia Liu ◽  
Linshen Xie ◽  
Xiaoheng Liu ◽  
Ye Zeng

Several positively charged epitopes on the surface of CXCL8 involved in the binding of the major components of endothelial glycocalyx, sulfated glycosaminoglycans (GAGs).In the present study, we aimed to test the hypothesis that the surface GAGs — heparan sulfate (HS) is a crucial prerequisite for enhancement of endothelial cell migration by CXCL8, and to explore its underlying mechanism by detecting the changes in expression of Rho-GTPases and in the organization of actin cytoskeleton after enzymatic removal of HS on human umbilical vein endothelial cells (HUVECs) by using heparinase III.Our results revealed that the reduction of wound area by CXCL8 was greatly attenuated by removal of HS. The upregulations of Rho-GTPases, including Cdc42, Rac1, and RhoA by CXCL8 were suppressed by removal of HS . The polymerization and polarization of actin cytoskeleton, and the increasing of stress fibers by CXCL8 were also abolished by heparinase III. Taken together, our results demonstrated an essential role of HS in mediating CXCL8-induced endothelial cell migration, and highlighted the biological relevance of the CXCL8 and GAGs interactions in endothelial cell migration.


1999 ◽  
Vol 19 (5) ◽  
pp. 1156-1161 ◽  
Author(s):  
Toyoaki Murohara ◽  
Bernhard Witzenbichler ◽  
Ioakim Spyridopoulos ◽  
Takayuki Asahara ◽  
Bo Ding ◽  
...  

Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2304-2311
Author(s):  
Daotai Nie ◽  
Keqin Tang ◽  
Clement Diglio ◽  
Kenneth V. Honn

Angiogenesis, the formation of new capillaries from preexisting blood vessels, is a multistep, highly orchestrated process involving vessel sprouting, endothelial cell migration, proliferation, tube differentiation, and survival. Eicosanoids, arachidonic acid (AA)-derived metabolites, have potent biologic activities on vascular endothelial cells. Endothelial cells can synthesize various eicosanoids, including the 12-lipoxygenase (LOX) product 12(S)-hydroxyeicosatetraenoic acid (HETE). Here we demonstrate that endogenous 12-LOX is involved in endothelial cell angiogenic responses. First, the 12-LOX inhibitor, N-benzyl-N-hydroxy-5-phenylpentanamide (BHPP), reduced endothelial cell proliferation stimulated either by basic fibroblast growth factor (bFGF) or by vascular endothelial growth factor (VEGF). Second, 12-LOX inhibitors blocked VEGF-induced endothelial cell migration, and this blockage could be partially reversed by the addition of 12(S)-HETE. Third, pretreatment of an angiogenic endothelial cell line, RV-ECT, with BHPP significantly inhibited the formation of tubelike/cordlike structures within Matrigel. Fourth, overexpression of 12-LOX in the CD4 endothelial cell line significantly stimulated cell migration and tube differentiation. In agreement with the critical role of 12-LOX in endothelial cell angiogenic responses in vitro, the 12-LOX inhibitor BHPP significantly reduced bFGF-induced angiogenesis in vivo using a Matrigel implantation bioassay. These findings demonstrate that AA metabolism in endothelial cells, especially the 12-LOX pathway, plays a critical role in angiogenesis.


2010 ◽  
Vol 196 ◽  
pp. S179-S180
Author(s):  
R. Dias ◽  
C. Drewes ◽  
C. Hebeda ◽  
S. Simons ◽  
A.M. Chudzinski-Tavassi ◽  
...  

Pathobiology ◽  
2010 ◽  
Vol 77 (1) ◽  
pp. 7-16 ◽  
Author(s):  
Michael V. Volin ◽  
Nha Huynh ◽  
Karolina Klosowska ◽  
Rosemary D. Reyes ◽  
James M. Woods

2004 ◽  
Vol 13 (3) ◽  
pp. 131-132
Author(s):  
Christie Avraamides ◽  
Michael Bromberg ◽  
Tracee S Panetti

2005 ◽  
Vol 171 (5) ◽  
pp. 893-904 ◽  
Author(s):  
Ru Feng Wu ◽  
You Cheng Xu ◽  
Zhenyi Ma ◽  
Fiemu E. Nwariaku ◽  
George A. Sarosi ◽  
...  

Endogenous oxidants participate in endothelial cell migration, suggesting that the enzymatic source of oxidants, like other proteins controlling cell migration, requires precise subcellular localization for spatial confinement of signaling effects. We found that the nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase adaptor p47phox and its binding partner TRAF4 were sequestered within nascent, focal complexlike structures in the lamellae of motile endothelial cells. TRAF4 directly associated with the focal contact scaffold Hic-5, and the knockdown of either protein, disruption of the complex, or oxidant scavenging blocked cell migration. An active mutant of TRAF4 activated the NADPH oxidase downstream of the Rho GTPases and p21-activated kinase 1 (PAK1) and oxidatively modified the focal contact phosphatase PTP-PEST. The oxidase also functioned upstream of Rac1 activation, suggesting its participation in a positive feedback loop. Active TRAF4 initiated robust membrane ruffling through Rac1, PAK1, and the oxidase, whereas the knockdown of PTP-PEST increased ruffling independent of oxidase activation. Our data suggest that TRAF4 specifies a molecular address within focal complexes that is targeted for oxidative modification during cell migration.


2007 ◽  
Vol 293 (1) ◽  
pp. H193-H203 ◽  
Author(s):  
C. Avraamides ◽  
M. E. Bromberg ◽  
J. P. Gaughan ◽  
S. M. Thomas ◽  
A. Y. Tsygankov ◽  
...  

Endothelial cell migration is critical for proper blood vessel development. Signals from growth factors and matrix proteins are integrated through focal adhesion proteins to alter cell migration. Hydrogen peroxide-inducible clone 5 (Hic-5), a paxillin family member, is enriched in the focal adhesions in bovine pulmonary artery endothelial (BPAE) cells, which migrate to lysophosphatidic acid (LPA) on denatured collagen. In this study, we investigate the role of Hic-5 in LPA-stimulated endothelial cell migration. LPA recruits Hic-5 to the focal adhesions and to the pseudopodia in BPAE cells plated on collagen, suggesting that recruitment of Hic-5 to focal adhesions is associated with endothelial cell migration. Knockdown of endogenous Hic-5 significantly decreases migration toward LPA, confirming involvement of Hic-5 in migration. To address the role of Hic-5 in endothelial cell migration, we exogenously expressed wild-type (WT) Hic-5 and green fluorescent protein Hic-5 C369A/C372A (LIM3 mutant) constructs in BPAE cells. WT Hic-5 expression increases chemotaxis of BPAE cells to LPA, whereas migration toward LPA of the green fluorescent protein Hic-5 C369A/C372A-expressing cells is similar to that shown in vector control cells. Additionally, ERK phosphorylation is enhanced in the presence of LPA in WT Hic-5 cells. A pharmacological inhibitor of MEK activity inhibits LPA-stimulated WT Hic-5 cell migration and ERK phosphorylation, suggesting Hic-5 enhances migration via MEK activation of ERK. Together, these studies indicate that Hic-5, a focal adhesion protein in endothelial cells, is recruited to the pseudopodia in the presence of LPA and enhances migration.


Sign in / Sign up

Export Citation Format

Share Document