scholarly journals Role of heparan sulfate in mediating CXCL8-induced endothelial cell migration

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1669 ◽  
Author(s):  
Zhiping Yan ◽  
Jingxia Liu ◽  
Linshen Xie ◽  
Xiaoheng Liu ◽  
Ye Zeng

CXCL8 (Interleukin-8, IL-8) plays an important role in angiogenesis and wound healing by prompting endothelial cell migration. It has been suggested that heparan sulfate (HS) could provide binding sites on endothelial cells to retain and activate highly diffusible cytokines and inflammatory chemokines. In the present study, we aimed to test the hypothesis that HS is essential for enhancement of endothelial cell migration by CXCL8, and to explore the underlying mechanism by detecting the changes in expression and activity of Rho GTPases and in the organization of actin cytoskeleton after enzymatic removal of HS on human umbilical vein endothelial cells (HUVECs) by using heparinase III. Our results revealed that the wound healing induced by CXCL8 was greatly attenuated by removal of HS. The CXCL8-upregulated Rho GTPases including Cdc42, Rac1, and RhoA, and CXCL8-increased Rac1/Rho activity were suppressed by removal of HS. The polymerization and polarization of actin cytoskeleton, and the increasing of stress fibers induced by CXCL8 were also abolished by heparinase III. Taken together, our results demonstrated an essential role of HS in mediating CXCL8-induced endothelial cell migration, and highlighted the biological importance of the interaction between CXCL8 and heparan sulfate in wound healing.

2015 ◽  
Author(s):  
Zhiping Yan ◽  
Jingxia Liu ◽  
Linshen Xie ◽  
Xiaoheng Liu ◽  
Ye Zeng

Several positively charged epitopes on the surface of CXCL8 involved in the binding of the major components of endothelial glycocalyx, sulfated glycosaminoglycans (GAGs).In the present study, we aimed to test the hypothesis that the surface GAGs — heparan sulfate (HS) is a crucial prerequisite for enhancement of endothelial cell migration by CXCL8, and to explore its underlying mechanism by detecting the changes in expression of Rho-GTPases and in the organization of actin cytoskeleton after enzymatic removal of HS on human umbilical vein endothelial cells (HUVECs) by using heparinase III.Our results revealed that the reduction of wound area by CXCL8 was greatly attenuated by removal of HS. The upregulations of Rho-GTPases, including Cdc42, Rac1, and RhoA by CXCL8 were suppressed by removal of HS . The polymerization and polarization of actin cytoskeleton, and the increasing of stress fibers by CXCL8 were also abolished by heparinase III. Taken together, our results demonstrated an essential role of HS in mediating CXCL8-induced endothelial cell migration, and highlighted the biological relevance of the CXCL8 and GAGs interactions in endothelial cell migration.


2015 ◽  
Author(s):  
Zhiping Yan ◽  
Jingxia Liu ◽  
Linshen Xie ◽  
Xiaoheng Liu ◽  
Ye Zeng

Several positively charged epitopes on the surface of CXCL8 involved in the binding of the major components of endothelial glycocalyx, sulfated glycosaminoglycans (GAGs).In the present study, we aimed to test the hypothesis that the surface GAGs — heparan sulfate (HS) is a crucial prerequisite for enhancement of endothelial cell migration by CXCL8, and to explore its underlying mechanism by detecting the changes in expression of Rho-GTPases and in the organization of actin cytoskeleton after enzymatic removal of HS on human umbilical vein endothelial cells (HUVECs) by using heparinase III.Our results revealed that the reduction of wound area by CXCL8 was greatly attenuated by removal of HS. The upregulations of Rho-GTPases, including Cdc42, Rac1, and RhoA by CXCL8 were suppressed by removal of HS . The polymerization and polarization of actin cytoskeleton, and the increasing of stress fibers by CXCL8 were also abolished by heparinase III. Taken together, our results demonstrated an essential role of HS in mediating CXCL8-induced endothelial cell migration, and highlighted the biological relevance of the CXCL8 and GAGs interactions in endothelial cell migration.


Blood ◽  
2006 ◽  
Vol 109 (4) ◽  
pp. 1472-1478 ◽  
Author(s):  
Florian Diehl ◽  
Lothar Rössig ◽  
Andreas M. Zeiher ◽  
Stefanie Dimmeler ◽  
Carmen Urbich

Abstract Posttranslational histone modification by acetylation or methylation regulates gene expression. Here, we investigated the role of the histone lysine methyltransferase MLL for angiogenic functions in human umbilical vein endothelial cells. Suppression of MLL expression by siRNA or incubation with the pharmacologic methyltransferase inhibitor 5′-deoxy-5′-(methylthio)adenosine significantly decreased endothelial-cell migration and capillary sprout formation, indicating that methyltransferase activity is required for proangiogenic endothelial-cell functions. Because the expression of homeodomain transcription factors (Hox) is regulated by MLL, we elucidated the role of Hox gene expression. MLL silencing was associated with reduced mRNA and protein expression of HoxA9 and HoxD3, whereas HoxB3, HoxB4, HoxB5, and HoxB9 were not altered. Overexpression of HoxA9 or HoxD3 partially compensated for impaired migration in MLL siRNA-transfected endothelial cells, suggesting that HoxA9 and HoxD3 both contribute to MLL-dependent migration. As a potential underlying mechanism, MLL siRNA down-regulated mRNA and protein levels of the HoxA9-dependent axon guidance factor EphB4. In contrast, MLL knockdown effects on capillary sprouting were not rescued by HoxA9 or HoxD3 overexpression, indicating that MLL affects additional targets required for 3-dimensional sprout formation. We conclude that MLL regulates endothelial-cell migration via HoxA9 and EphB4, whereas sprout formation requires MLL-dependent signals beyond HoxA9 and HoxD3.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256646
Author(s):  
Harsha Nagar ◽  
Seonhee Kim ◽  
Ikjun Lee ◽  
Su-Jeong Choi ◽  
Shuyu Piao ◽  
...  

Rho GDP-dissociation inhibitor (RhoGDI), a downregulator of Rho family GTPases, prevents nucleotide exchange and membrane association. It is responsible for the activation of Rho GTPases, which regulate a variety of cellular processes, such as migration. Although RhoGDI2 has been identified as a tumor suppressor gene involved in cellular migration and invasion, little is known about its role in vascular endothelial cell (EC) migration. CR6-interacting factor 1 (CRIF1) is a CR6/GADD45-interacting protein with important mitochondrial functions and regulation of cell growth. We examined the expression of RhoGDI2 in CRIF1-deficient human umbilical vein endothelial cells (HUVECs) and its role in cell migration. Expression of RhoGDI2 was found to be considerably higher in CRIF1-deficient HUVECs along with suppression of cell migration. Moreover, the phosphorylation levels of Akt and CREB were decreased in CRIF1-silenced cells. The Akt-CREB signaling pathway was implicated in the changes in endothelial cell migration caused by CRIF1 downregulation. In addition to RhoGDI2, we identified another factor that promotes migration and invasion of ECs. Adrenomedullin2 (ADM2) is an autocrine/paracrine factor that regulates vascular tone and other vascular functions. Endogenous ADM2 levels were elevated in CRIF1-silenced HUVECs with no effect on cell migration. However, siRNA-mediated depletion of RhoGDI2 or exogenous ADM2 administration significantly restored cell migration via the Akt-CREB signaling pathway. In conclusion, RhoGDI2 and ADM2 play important roles in the migration of CRIF1-deficient endothelial cells.


Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2304-2311
Author(s):  
Daotai Nie ◽  
Keqin Tang ◽  
Clement Diglio ◽  
Kenneth V. Honn

Angiogenesis, the formation of new capillaries from preexisting blood vessels, is a multistep, highly orchestrated process involving vessel sprouting, endothelial cell migration, proliferation, tube differentiation, and survival. Eicosanoids, arachidonic acid (AA)-derived metabolites, have potent biologic activities on vascular endothelial cells. Endothelial cells can synthesize various eicosanoids, including the 12-lipoxygenase (LOX) product 12(S)-hydroxyeicosatetraenoic acid (HETE). Here we demonstrate that endogenous 12-LOX is involved in endothelial cell angiogenic responses. First, the 12-LOX inhibitor, N-benzyl-N-hydroxy-5-phenylpentanamide (BHPP), reduced endothelial cell proliferation stimulated either by basic fibroblast growth factor (bFGF) or by vascular endothelial growth factor (VEGF). Second, 12-LOX inhibitors blocked VEGF-induced endothelial cell migration, and this blockage could be partially reversed by the addition of 12(S)-HETE. Third, pretreatment of an angiogenic endothelial cell line, RV-ECT, with BHPP significantly inhibited the formation of tubelike/cordlike structures within Matrigel. Fourth, overexpression of 12-LOX in the CD4 endothelial cell line significantly stimulated cell migration and tube differentiation. In agreement with the critical role of 12-LOX in endothelial cell angiogenic responses in vitro, the 12-LOX inhibitor BHPP significantly reduced bFGF-induced angiogenesis in vivo using a Matrigel implantation bioassay. These findings demonstrate that AA metabolism in endothelial cells, especially the 12-LOX pathway, plays a critical role in angiogenesis.


2008 ◽  
Vol 22 (S2) ◽  
pp. 611-611
Author(s):  
Georgia Mavria ◽  
Sabu Abraham ◽  
Maggie Yeo ◽  
Christopher J Marshall

2019 ◽  
Vol 317 (2) ◽  
pp. C270-C276 ◽  
Author(s):  
Jessica Morand ◽  
Anne Briançon-Marjollet ◽  
Emeline Lemarie ◽  
Brigitte Gonthier ◽  
Josiane Arnaud ◽  
...  

Zinc is involved in the expression and function of various transcription factors, including the hypoxia-inducible factor-1 (HIF-1). HIF-1 and its target gene endothelin-1 (ET-1) are activated by intermittent hypoxia (IH), one of the main consequences of obstructive sleep apnea (OSA), and both play a key role in the cardiovascular consequences of IH. Because OSA and IH are associated with zinc deficiency, we investigated the effect of zinc deficiency caused by chelation on the HIF-1/ET-1 pathway and its functional consequences in endothelial cells. Primary human microvascular endothelial cells (HMVEC) were incubated with submicromolar doses of the zinc-specific membrane-permeable chelator N, N, N′, N′-tetrakis(2-pyridylmethyl)-ethylene diamine (TPEN, 0.5 µM) or ET-1 (0.01 µM) with or without bosentan, a dual ET-1-receptor antagonist. HIF-1α expression was silenced by transfection with specific siRNA. Nuclear HIF-1 content was assessed by immunofluorescence microscopy and Western blot. Migratory capacity of HMVEC was evaluated with a wound-healing scratch assay. Zinc chelation by TPEN exposure induced the translocation of the cytosolic HIF-1α subunit of HIF-1 to the nucleus as well as an HIF-1-mediated ET-1 secretion by HMVEC. Incubation with either TPEN or ET-1 increased endothelial wound-healing capacity. Both HIF-1α silencing or bosentan abolished this effect. Altogether, these results suggest that zinc deficiency upregulates ET-1 signaling through HIF-1 activation and stimulates endothelial cell migration, suggesting an important role of zinc in the vascular consequences of IH and OSA mediated by HIF-1-ET- signaling.


2017 ◽  
Vol 41 (4) ◽  
pp. 1346-1359 ◽  
Author(s):  
Li Ju ◽  
Zhiwen Zhou ◽  
Bo Jiang ◽  
Yue Lou ◽  
Xirong Guo

Background/Aims: Pro-angiogenic factors VEGF and IL-8 play a major role in modulating the migratory potential of endothelial cells. The goal of this study was to investigate the effect of autocrine VEGF and IL-8 in the form of self-conditioned medium (CM) on human umbilical vein endothelial cells (HUVECs). Methods: Enzyme-linked immunosorbent assay (ELISA) examined the automatic secretion of VEGF and IL-8 protein by HUVECs. Western blot, small interfering RNA (siRNA), pulldown and Transwell assays were used to explore the role and the mechanism of autocrine VEGF and IL-8 in migration of HUVECs. Results: Neutralizing VEGF and IL-8 in CM significantly abrogated CM-induced migration of HUVECs. Autocrine VEGF and IL-8 increased Src phosphorylation, Rac1 activity and PAK1 phosphorylation in a time dependent manner. Additionally, blocking Rac1 activity with Rac1 siRNA largely abolished autocrine VEGF and IL-8-induced cell migration. Vav2 siRNA suppressed autocrine VEGF and IL-8-induced Rac1 activation and cell migration. Furthermore, blocking Src signaling with PP2, a specific inhibitor for Src, markedly prevented autocrine VEGF and IL-8-induced Vav2 and Rac1 activation as well as consequently cell migration. PAK1 siRNA also significantly abolished autocrine VEGF and IL-8-induced cell migration. Conclusions: We demonstrated for the first time that autocrine VEGF and IL-8 promoted endothelial cell migration via the Src/Vav2/Rac1/PAK1 signaling pathway. This finding reveals the molecular mechanism in the increase of endothelial cell migration induced by autocrine growth factors and cytokines, which is expected to provide a novel therapeutic target in vascular diseases.


Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2304-2311 ◽  
Author(s):  
Daotai Nie ◽  
Keqin Tang ◽  
Clement Diglio ◽  
Kenneth V. Honn

Abstract Angiogenesis, the formation of new capillaries from preexisting blood vessels, is a multistep, highly orchestrated process involving vessel sprouting, endothelial cell migration, proliferation, tube differentiation, and survival. Eicosanoids, arachidonic acid (AA)-derived metabolites, have potent biologic activities on vascular endothelial cells. Endothelial cells can synthesize various eicosanoids, including the 12-lipoxygenase (LOX) product 12(S)-hydroxyeicosatetraenoic acid (HETE). Here we demonstrate that endogenous 12-LOX is involved in endothelial cell angiogenic responses. First, the 12-LOX inhibitor, N-benzyl-N-hydroxy-5-phenylpentanamide (BHPP), reduced endothelial cell proliferation stimulated either by basic fibroblast growth factor (bFGF) or by vascular endothelial growth factor (VEGF). Second, 12-LOX inhibitors blocked VEGF-induced endothelial cell migration, and this blockage could be partially reversed by the addition of 12(S)-HETE. Third, pretreatment of an angiogenic endothelial cell line, RV-ECT, with BHPP significantly inhibited the formation of tubelike/cordlike structures within Matrigel. Fourth, overexpression of 12-LOX in the CD4 endothelial cell line significantly stimulated cell migration and tube differentiation. In agreement with the critical role of 12-LOX in endothelial cell angiogenic responses in vitro, the 12-LOX inhibitor BHPP significantly reduced bFGF-induced angiogenesis in vivo using a Matrigel implantation bioassay. These findings demonstrate that AA metabolism in endothelial cells, especially the 12-LOX pathway, plays a critical role in angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document