scholarly journals Signaling pathways in control of gastric acid secretion and food‐stomach‐bone axis revealed by gene expression profiling in the stomach of genetically targeted mice deficient in CCK1 receptor and gastrin/CCK2 receptor

2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Duan Chen ◽  
Chun‐Mei Zhao
2006 ◽  
Vol 24 (2) ◽  
pp. 124-132 ◽  
Author(s):  
Renu N. Jain ◽  
Cynthia S. Brunkan ◽  
Catherine S. Chew ◽  
Linda C. Samuelson

Previous studies demonstrated that mice with a null mutation in the gene encoding the hormone gastrin have impaired gastric acid secretion. Hence, the aim of this study was to evaluate changes in the acid-secreting parietal cell in gastrin-deficient (GAS-KO) mice. Analysis of several transcripts encoding parietal cell proteins involved in gastric acid secretion showed reduced abundance in the GAS-KO stomach, including H+,K+-ATPase α- and β-subunits, KCNQ1 potassium channel, aquaporin-4 water channel, and creatine kinase B, which were reversed by gastrin infusion for 1 wk. Although mRNA and protein levels of LIM and SH3 domain-containing protein-1 (LASP-1) were not greatly changed in the mutant, there was a marked reduction in phosphorylation, consistent with its proposed role as a cAMP signal adaptor protein associated with acid secretion. A more comprehensive analysis of parietal cell gene expression in GAS-KO mice was performed using the Affymetrix U74AV2 chip with RNA from parietal cells purified by flow cytometry to >90%. Comparison of gene expression in GAS-KO and wild-type mice identified 47 transcripts that differed by greater than or equal to twofold, suggesting that gastrin affects parietal cell gene expression in a specific manner. The differentially expressed genes included several genes in signaling pathways, with a substantial number (20%) known to be target genes for Wnt and Myc.


Author(s):  
Mohammad Azhar Kamal ◽  
Mohiuddin Khan Warsi ◽  
Afnan Alnajeebi ◽  
Haytham A Ali ◽  
Nawal Helmi ◽  
...  

Hypoxia most often occurs in cancer and the occurrence of hypoxia helps the cells in adapting different responses than the normal such as the activation of of those signaling pathways which regulate proliferation, angiogenesis, and cell death. There are large number of genes which are known to be associated with diverse biological processes and their control and coordination and in different cancers, the hypoxia-response differs. In this study our goal is to understand the impact of alteration in expression of hypoxia and immune systems related genes and its survival in breast cancer and analyzed the hallmarks of molecular signatures. For this purpose we have collected the hypoxia-associated genes based on the literature related with diverse biological processes and functions. For all these genes, we have studied the survival analysis, breast cancer gene expression profiling, and relevant hypoxic genes alterations. Based on our study, we conclude that there are 17 critical pathways and 40 genes from hypoxic gene list appear to play the major roles in case of breast cancer and overall we observe that immune signaling pathways and its components are highly altered in case of breast cancer. Among the top raked hallmarks of molecular signatures are apoptosis, hypoxia, DNA repair, E2F targets, MYC targets, androgen and estrogen response, and TNFa signaling.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Seyyed Ali Mard ◽  
Hasan Askari ◽  
Niloofar Neisi ◽  
Ali Veisi

The present study was designed to investigate the effect of H2S on distention-induced gastric acid secretion. Fifty-two rats were randomly assigned to seven experimental groups. The gastric acid secretion was stimulated by gastric distention. Two groups of rats received L-cysteine or saline for 5 days before stimulation of the gastric acid secretion. Two groups of animals also received NaHS or saline just prior to stimulation of the gastric acid secretion. The effect of L-NAME and propargylglycine was also investigated. The mucosal levels of the gene expression of cyclooxygenase-2 (COX-2), endothelial nitric oxide synthase (eNOS), and H+/K+-ATPaseα-subunit were quantified by qPCR and luminal concentrations of NO were determined. NaHS and L-cysteine decreased the gastric acid output in response to distention. The mRNA expression of H+/K+-ATPaseα-subunit decreased by NaHS and L-cysteine as compared with the control group while gene expression of eNOS and COX-2 was upregulated. The inhibitory effect of NaHS on distention-induced gastric acid secretion was mitigated by pretreatment of L-NAME. These findings suggest the involvement of NO in mediating the antisecretory effect of H2S.


2005 ◽  
Vol 13 (1-3) ◽  
pp. 201-207 ◽  
Author(s):  
Duan Chen ◽  
Lennart Friis-Hansen ◽  
Rolf Håkanson ◽  
Chun-Mei Zhao

Sign in / Sign up

Export Citation Format

Share Document