scholarly journals The Inhibitory Effects of Clitoria ternatea Extract on Protein Glycation, Amadori Product and Amyloid Cross β‐structure Formations.

2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Sirintorn Yibchok‐anun ◽  
Poramin Chayaratanasin ◽  
Sirichai Adisakwattana
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Hong Mei Li ◽  
Jin Kyu Kim ◽  
Jai Man Jang ◽  
Sang Oh Kwon ◽  
Cheng Bi Cui ◽  
...  

To evaluate the aldose reductase (AR) enzyme inhibitory ability ofPrunella vulgarisL. extract, six compounds were isolated and tested for their effects. The components were subjected toin vitrobioassays to investigate their inhibitory assays using rat lens aldose reductase (rAR) and human recombinant AR (rhAR). Among them, caffeic acid ethylene ester showed the potent inhibition, with the IC50values of rAR and rhAR at3.2±0.55 μM and12.58±0.32 μM, respectively. In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/concentration of substrate, this compound showed noncompetitive inhibition against rhAR. Furthermore, it inhibited galactitol formation in a rat lens incubated with a high concentration of galactose. Also it has antioxidative as well as advanced glycation end products (AGEs) inhibitory effects. As a result, this compound could be offered as a leading compound for further study as a new natural products drug for diabetic complications.


2009 ◽  
Vol 42 (2) ◽  
pp. 104-108 ◽  
Author(s):  
Ho-Su Song ◽  
Keun-Tai Lee ◽  
Seong-Min Park ◽  
Ok-Ju Kang

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2023
Author(s):  
Vítor Spínola ◽  
Paula C. Castilho

Methanolic leaf extracts of four Lauraceae species endemic to Laurisilva forest (Apollonias barbujana, Laurus novocanariensis, Ocotea foetens and Persea indica) were investigated for the first time for their potential to inhibit key enzymes linked to type-2 diabetes (α-amylase, α-glucosidase, aldose reductase) and obesity (pancreatic lipase), and protein glycation. Lauraceae extracts revealed significant inhibitory activities in all assays, altough with different ability between species. In general, P. indica showed the most promissing results. In the protein glycation assay, all analysed extracts displayed a stronger effect than a reference compound: aminoguanidine (AMG). The in vitro anti-diabetic, anti-obesity and anti-glycation activities of analysed extracts showed correlation with their flavonols and flavan-3-ols (in particular, proanthocyanins) contents. These Lauraceae species have the capacity to assist in adjuvant therapy of type-2 diabetes and associated complications, through modulation of the activity of key metabolic enzymes and prevention of advanced glycation end-products (AGEs) formation.


2018 ◽  
Vol 67 (3) ◽  
pp. 314-320 ◽  
Author(s):  
S. Tarasuntisuk ◽  
T. Patipong ◽  
T. Hibino ◽  
R. Waditee-Sirisattha ◽  
H. Kageyama

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Poramin Chayaratanasin ◽  
Sirichai Adisakwattana ◽  
Thavaree Thilavech

Abstract Background Methylglyoxal (MG) is a highly reactive dicarbonyl precursor for the formation of advanced glycation end products (AGEs) associated with age-related diseases, including diabetes and its complications. Clitoria ternatea L. flower has been reported to possess antioxidant and antiglycating properties. Evidence indicates that the extract of Clitoria ternatea L. flower inhibits fructose-induced protein glycation and oxidative damage to bovine serum albumin (BSA). However, there is no evidence to support the inhibitory effect of CTE against MG-mediated protein glycation and oxidative damage to protein and DNA. Therefore, the aim of the present study was to investigate whether C. ternatea flower extract (CTE) prevents MG-induced protein glycation and oxidative DNA damage. Methods The formation of fluorescent AGEs in BSA was evaluated using spectrofluorometer. The protein carbonyl and thiol group content were used for detecting protein oxidation. DNA strand breakage in a glycation model comprising of MG, lysine and Cu2+ or a free radical generator 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH) systems was investigated using gel electrophoresis. Generation of superoxide anions and hydroxyl radicals in the MG/lysine system was assessed by the cytochrome c reduction assay and thiobarbituric acid reactive substances assay, respectively. High performance liquid chromatography (HPLC) was used to measure the MG-trapping ability. Results In the BSA/MG system, CTE (0.25–1 mg/mL) significantly inhibited the formation of fluorescent AGEs and protein oxidation by reducing protein carbonyl content as well as preventing the protein thiol depletion. The concentration of CTE at 0.125–1 mg/mL prevented oxidative DNA cleavage in MG/lysine and AAPH systems associated with the inhibition of superoxide anion and hydroxyl radical formation. It also directly trapped MG in a concentration-dependent manner, ranging from 15 to 43%. Conclusions The study findings suggest that the direct carbonyl trapping ability and the free radical scavenging activity of CTE are the underlying mechanisms responsible for the prevention of protein glycation and oxidative DNA damage.


Author(s):  
Pınar Ercan ◽  
Sedef Nehir El

Abstract. The goals of this study were to determine and evaluate the bioaccessibility of total anthocyanin and procyanidin in apple (Amasya, Malus communis), red grape (Papazkarası, Vitis vinifera) and cinnamon (Cassia, Cinnamomum) using an in vitro static digestion system based on human gastrointestinal physiologically relevant conditions. Also, in vitro inhibitory effects of these foods on lipid (lipase) and carbohydrate digestive enzymes (α-amylase and α-glucosidase) were performed with before and after digested samples using acarbose and methylumbelliferyl oleate (4MUO) as the positive control. While the highest total anthocyanin content was found in red grape (164 ± 2.51 mg/100 g), the highest procyanidin content was found in cinnamon (6432 ± 177.31 mg/100 g) (p < 0.05). The anthocyanin bioaccessibilities were found as 10.2 ± 1%, 8.23 ± 0.64%, and 8.73 ± 0.70% in apple, red grape, and cinnamon, respectively. The procyanidin bioaccessibilities of apple, red grape, and cinnamon were found as 17.57 ± 0.71%, 14.08 ± 0.74% and 18.75 ± 1.49%, respectively. The analyzed apple, red grape and cinnamon showed the inhibitory activity against α-glucosidase (IC50 544 ± 21.94, 445 ± 15.67, 1592 ± 17.58 μg/mL, respectively), α-amylase (IC50 38.4 ± 7.26, 56.1 ± 3.60, 3.54 ± 0.86 μg/mL, respectively), and lipase (IC50 52.7 ± 2.05, 581 ± 54.14, 49.6 ± 2.72 μg/mL), respectively. According to our results apple, red grape and cinnamon have potential to inhibit of lipase, α-amylase and α-glucosidase digestive enzymes.


Sign in / Sign up

Export Citation Format

Share Document