Targeted Expression of IGF‐1 Transgene to Skeletal Muscle Accelerates Muscle and Motor Neuron Regeneration

2002 ◽  
Vol 17 (1) ◽  
pp. 53-55 ◽  
Author(s):  
Eric D. Rabinovsky ◽  
Ethem Gelir ◽  
Seda Gelir ◽  
Hui Lui ◽  
Maan Kattash ◽  
...  
Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1449
Author(s):  
Cyril Quessada ◽  
Alexandra Bouscary ◽  
Frédérique René ◽  
Cristiana Valle ◽  
Alberto Ferri ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive and selective loss of motor neurons, amyotrophy and skeletal muscle paralysis usually leading to death due to respiratory failure. While generally considered an intrinsic motor neuron disease, data obtained in recent years, including our own, suggest that motor neuron protection is not sufficient to counter the disease. The dismantling of the neuromuscular junction is closely linked to chronic energy deficit found throughout the body. Metabolic (hypermetabolism and dyslipidemia) and mitochondrial alterations described in patients and murine models of ALS are associated with the development and progression of disease pathology and they appear long before motor neurons die. It is clear that these metabolic changes participate in the pathology of the disease. In this review, we summarize these changes seen throughout the course of the disease, and the subsequent impact of glucose–fatty acid oxidation imbalance on disease progression. We also highlight studies that show that correcting this loss of metabolic flexibility should now be considered a major goal for the treatment of ALS.


2018 ◽  
Author(s):  
Mohsen Afshar Bakooshli ◽  
Ethan S Lippmann ◽  
Ben Mulcahy ◽  
Nisha R Iyer ◽  
Christine T Nguyen ◽  
...  

SummaryTwo-dimensional (2D) human skeletal muscle fiber cultures are ill equipped to support the contractile properties of maturing muscle fibers. This limits their application to the study of adult human neuromuscular junction (NMJ) development, a process requiring maturation of muscle fibers in the presence of motor neuron endplates. Here we describe a three-dimensional (3D) co-culture method whereby human muscle progenitors mixed with human pluripotent stem cell-derived motor neurons self-organize to form functional NMJ connections within two weeks. Functional connectivity between motor neuron endplates and muscle fibers is confirmed with calcium transient imaging and electrophysiological recordings. Notably, we only observed epsilon acetylcholine receptor subunit protein upregulation and activity in 3D co-culture. This demonstrates that the 3D co-culture system supports a developmental shift from the embryonic to adult form of the receptor that does not occur in 2D co-culture. Further, 3D co-culture treatments with myasthenia gravis patient sera shows the ease of studying human disease with the system. This work delivers a simple, reproducible, and adaptable method to model and evaluate adult human NMJ de novo development and disease in culture.


Author(s):  
Valentina Pegoraro ◽  
Antonio Merico ◽  
Corrado Angelini

Amyotrophic lateral sclerosis (ALS) is a rare, progressive, neurodegenerative disorder caused by degeneration of upper and lower motor neurons. The disease process leads from lower motor neuron involvement to progressive muscle atrophy, weakness, fasciculations for the upper motor neuron involvement to spasticity. Muscle atrophy in ALS is caused by a dysregulation in the molecular network controlling fast and slow muscle fibres. Denervation and reinnervation processes in skeletal muscle occur in the course of ALS and are modulated by rehabilitation. MicroRNAs (miRNAs) are small non-coding RNAs that modulate a wide range of biological functions under various pathophysiological conditions. MiRNAs can be secreted by various cell types and they are markedly stable in body fluids. MiR-1, miR-133 a, miR-133b, and miR-206 are called “myomiRs” and are considered markers of myogenesis during muscle regeneration and neuromuscular junction stabilization or sprouting. We observed a positive effect of a standard aerobic exercise rehabilitative protocol conducted for six weeks in 18 ALS patients during hospitalization in our center. We correlated clinical scales with molecular data on myomiRs. After six weeks of moderate aerobic exercise, myomiRNAs were down-regulated, suggesting an active proliferation of satellite cells in muscle and increased neuromuscular junctions. Our data suggest that circulating miRNAs modulate during skeletal muscle recovery in response to physical rehabilitation in ALS.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Gil Wolfe

As I have constructed these in recent years, this review runs “In reverse” from skeletal muscle retrograde to the motor neuron. All studies were published in 2019 or 2020, and within one year of preparation of this bulleted syllabus. I focus mainly on management issues but there is a bit of pathogenesis mixed in. I hope the review provides a framework for some of the advances in our field in the last year.


Bioprinting ◽  
2021 ◽  
pp. 98-118
Author(s):  
Kenneth Douglas

Abstract: This chapter recounts bioprinting studies of skin, bone, skeletal muscle, and neuromuscular junctions. The chapter begins with a study of bioprinted skin designed to enable the creation of skin with a uniform pigmentation. The chapter relates two very different approaches to bioprinted bone: a synthetic bone called hyperelastic bone and a strategy that prints cartilage precursors to bone and then induces the conversion of the cartilage to bone by judicious choice of bioinks. Muscles move bone, and the chapter discusses an investigation of bioprinted skeletal muscle. Finally, the chapter considers an attempt to bioprint a neuromuscular junction, a synapse—a minute gap—of about 20 billionths of a meter between a motor neuron and the cell membrane of a skeletal muscle cell. A motor neuron is a nerve in the central nervous system that sends signals to the muscles of the body.


2006 ◽  
Vol 24 (2) ◽  
pp. 97-104 ◽  
Author(s):  
Robert Olaso ◽  
Vandana Joshi ◽  
Julien Fernandez ◽  
Natacha Roblot ◽  
Sabrina Courageot ◽  
...  

Mutations of the survival of motor neuron gene ( SMN1) are responsible for spinal muscular atrophies (SMA), a frequent recessive autosomal motor neuron disease. SMN is involved in various processes including RNA metabolism. However, the molecular pathway linking marked deficiency of SMN to SMA phenotype remains unclear. Homozygous deletion of murine Smn exon 7 directed to neurons or skeletal muscle causes severe motor axonal or myofiber degeneration, respectively. With the use of cDNA microarrays, expression profiles of 8,400 genes were analyzed in skeletal muscle and spinal cord of muscular and neuronal mutants, respectively, and compared with age-matched controls. A high proportion of genes (20 of 429, 5%) was involved in pre-mRNA splicing, ribosomal RNA processing, or RNA decay, and 18 of them were upregulated in mutant tissues. By analyzing other neuromuscular disorders, we showed that most of them (14 of 18) were specific to the SMN defect. Quantitative PCR analysis of these transcripts showed that gene activation was an early adaptive response to the lack but not reduced amount of full-length SMN in mouse mutant tissues. In human SMA tissues, activation of this program was not observed, which could be ascribed to the reduction but not the absence of full-length SMN.


Sign in / Sign up

Export Citation Format

Share Document