Maresin 1 improves insulin sensitivity and attenuates adipose tissue inflammation in ob/ob and diet‐induced obese mice

2017 ◽  
Vol 31 (5) ◽  
pp. 2135-2145 ◽  
Author(s):  
Leyre Martínez-Fernández ◽  
Pedro González-Muniesa ◽  
Laura M. Laiglesia ◽  
Neira Sáinz ◽  
Pedro L. Prieto-Hontoria ◽  
...  
2018 ◽  
Vol 315 (4) ◽  
pp. E676-E693 ◽  
Author(s):  
Valentina Caracciolo ◽  
Jeanette Young ◽  
Donna Gonzales ◽  
Yingchun Ni ◽  
Stephen J. Flowers ◽  
...  

Obesity is associated with adipose tissue inflammation that contributes to insulin resistance. Zinc finger protein 36 (Zfp36) is an mRNA-binding protein that reduces inflammation by binding to cytokine transcripts and promoting their degradation. We hypothesized that myeloid-specific deficiency of Zfp36 would lead to increased adipose tissue inflammation and reduced insulin sensitivity in diet-induced obese mice. As expected, wild-type (Control) mice became obese and diabetic on a high-fat diet, and obese mice with myeloid-specific loss of Zfp36 [knockout (KO)] demonstrated increased adipose tissue and liver cytokine mRNA expression compared with Control mice. Unexpectedly, in glucose tolerance testing and hyperinsulinemic-euglycemic clamp studies, myeloid Zfp36 KO mice demonstrated improved insulin sensitivity compared with Control mice. Obese KO and Control mice had similar macrophage infiltration of the adipose depots and similar peripheral cytokine levels, but lean and obese KO mice demonstrated increased Kupffer cell (KC; the hepatic macrophage)-expressed Mac2 compared with lean Control mice. Insulin resistance in obese Control mice was associated with enhanced Zfp36 expression in KCs. Compared with Control mice, KO mice demonstrated increased hepatic mRNA expression of a multitude of classical (M1) inflammatory cytokines/chemokines, and this M1-inflammatory hepatic milieu was associated with enhanced nuclear localization of IKKβ and the p65 subunit of NF-κB. Our data confirm the important role of innate immune cells in regulating hepatic insulin sensitivity and lipid metabolism, challenge-prevailing models in which M1 inflammatory responses predict insulin resistance, and indicate that myeloid-expressed Zfp36 modulates the response to insulin in mice.


2015 ◽  
Vol 308 (5) ◽  
pp. E414-E425 ◽  
Author(s):  
Shu Chen ◽  
Fumiaki Okahara ◽  
Noriko Osaki ◽  
Akira Shimotoyodome

Glucose-dependent insulinotropic polypeptide (GIP) is a gut hormone secreted in response to dietary fat and glucose. The blood GIP level is elevated in obesity and diabetes. GIP stimulates proinflammatory gene expression and impairs insulin sensitivity in cultured adipocytes. In obesity, hypoxia within adipose tissue can induce inflammation. The aims of this study were 1) to examine the proinflammatory effect of increased GIP signaling in adipose tissues in vivo and 2) to clarify the association between GIP and hypoxic signaling in adipose tissue inflammation. We administered GIP intraperitoneally to misty (lean) and db/db (obese) mice and examined adipose tissue inflammation and insulin sensitivity. We also examined the effects of GIP and hypoxia on expression of the GIP receptor (GIPR) gene and proinflammatory genes in 3T3-L1 adipocytes. GIP administration increased monocyte chemoattractant protein-1 (MCP-1) expression and macrophage infiltration into adipose tissue and increased blood glucose in db/db mice. GIPR and hypoxia-inducible factor-1α (HIF-1α) expressions were positively correlated in the adipose tissue in mice. GIPR expression increased dramatically in differentiated adipocytes. GIP treatment of adipocytes increased MCP-1 and interleukin-6 (IL-6) production. Adipocytes cultured either with RAW 264 macrophages or under hypoxia expressed more GIPR and HIF-1α, and GIP treatment increased gene expression of plasminogen activator inhibitor 1 and IL-6. HIF-1α gene silencing diminished both macrophage- and hypoxia-induced GIPR expression and GIP-induced IL-6 expression in adipocytes. Thus, increased GIP signaling plays a significant role in adipose tissue inflammation and thereby insulin resistance in obese mice, and HIF-1α may contribute to this process.


2008 ◽  
Vol 295 (3) ◽  
pp. E586-E594 ◽  
Author(s):  
Richard L. Bradley ◽  
Justin Y. Jeon ◽  
Fen-Fen Liu ◽  
Eleftheria Maratos-Flier

Exercise promotes weight loss and improves insulin sensitivity. However, the molecular mechanisms mediating its beneficial effects are not fully understood. Obesity correlates with increased production of inflammatory cytokines, which in turn, contributes to systemic insulin resistance. To test the hypothesis that exercise mitigates this inflammatory response, thereby improving insulin sensitivity, we developed a model of voluntary exercise in mice made obese by feeding of a high fat/high sucrose diet (HFD). Over four wk, mice fed chow gained 2.3 ± 0.3 g, while HFD mice gained 6.8 ± 0.5 g. After 4 wk, mice were subdivided into four groups: chow-no exercise, chow-exercise, HFD-no exercise, HFD-exercise and monitored for an additional 6 wk. Chow-no exercise and HFD-no exercise mice gained an additional 1.2 ± 0.3 g and 3.3 ± 0.5 g respectively. Exercising mice had higher food consumption, but did not gain additional weight. As expected, GTT and ITT showed impaired glucose tolerance and insulin resistance in HFD-no exercise mice. However, glucose tolerance improved significantly and insulin sensitivity was completely normalized in HFD-exercise animals. Furthermore, expression of TNF-α, MCP-1, PAI-1 and IKKβ was increased in adipose tissue from HFD mice compared with chow mice, whereas exercise reversed the increased expression of these inflammatory cytokines. In contrast, expression of these cytokines in liver was unchanged among the four groups. These results suggest that exercise partially reduces adiposity, reverses insulin resistance and decreases adipose tissue inflammation in diet-induced obese mice, despite continued consumption of HFD.


Diabetes ◽  
2018 ◽  
Vol 67 (12) ◽  
pp. 2541-2553 ◽  
Author(s):  
Eun-Hee Koh ◽  
Natasha Chernis ◽  
Pradip K. Saha ◽  
Liuling Xiao ◽  
David A. Bader ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Latha Muniappan ◽  
Aida Javidan ◽  
Weihua Jiang ◽  
Shayan Mohammadmoradi ◽  
Jessica J. Moorleghen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document