hypoxia inducible factors
Recently Published Documents


TOTAL DOCUMENTS

472
(FIVE YEARS 112)

H-INDEX

72
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Michael Batie ◽  
Julianty Frost ◽  
Dilem Shakir ◽  
Sonia Rocha

Reduced oxygen availability (hypoxia) can act as a signalling cue in physiological processes such as development, but also in pathological conditions such as cancer or ischaemic disease. As such, understanding how cells and organisms respond to hypoxia is of great importance. The family of transcription factors called Hypoxia Inducible Factors (HIFs) coordinate a transcriptional programme required for survival and adaptation to hypoxia. The effects of hypoxia and HIF on the chromatin accessibility landscape are still unclear. Here, using genome wide mapping of chromatin accessibility via ATAC-seq, we find hypoxia induces loci specific changes in chromatin accessibility enriched at hypoxia transcriptionally responsive genes. These changes are predominantly HIF dependent, reversible upon reoxygenation and partially mimicked by chemical HIF stabilisation independent of molecular dioxygenase inhibition. This work demonstrates that indeed, HIF stabilisation is necessary and sufficient to alter chromatin accessibility in hypoxia, with implications for our understanding of gene expression regulation by hypoxia and HIF.


Der Hautarzt ◽  
2022 ◽  
Author(s):  
Ferdinand Toberer ◽  
Julia K. Winkler ◽  
Holger A. Haenssle ◽  
Monika Heinzel-Gutenbrunner ◽  
Alexander Enk ◽  
...  

ZusammenfassungMetabolische Anpassungsprozesse, vermittelt durch sog. Hypoxie-induzierbare Faktoren und deren Zielgene, spielen in zahlreichen Malignomen eine wichtige Rolle. Rasch wachsende Tumoren können ihre Stoffwechselvorgänge an eine auftretende Hypoxie anpassen. So werden beispielsweise nach der Aktivierung des „Hypoxia inducible-factors-1α“ Modifikationen am Glukosestoffwechsel, der intrazellulären pH-Regulation oder der Angiogenese initiiert. In dieser immunhistochemischen Pilotstudie analysierten wir primär kutane Melanome mit positivem und negativem Schildwächterlymphknotenstatus im Hinblick auf mögliche Unterschiede ihrer metabolischen Signatur. Hierbei konnten wir unter anderem zeigen, dass die Expression von Glukosetransporter‑1 (GLUT-1) sowohl in allen Melanomen ohne Subgruppenanalyse, als auch in der Subgruppe mit negativem Schildwächterlymphknoten positiv mit der Tumordicke sowie dem Vorliegen einer Ulzeration korrelierte. Zudem korrelierte bei Melanomen mit positivem Schildwächterlymphknoten die Expression von vaskulärem endothelialem Wachstumsfaktor (VEGF) positiv mit dem Vorliegen einer Ulzeration.


2022 ◽  
Author(s):  
Demet Taşdemir ◽  
Ayşegül Karaküçük-İyidoğan ◽  
Yasemin Saygideger ◽  
EMİNE Elçin Emre ◽  
Tuğba Taşkın-Tok ◽  
...  

Hypoxia-inducible factors (HIF), one of the targeted treatment strategies with a rising promise in lung cancer, are known to play a role in tumor growth and other oncogenic properties in...


Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1584
Author(s):  
Manjunath Bettadapura ◽  
Hayden Roys ◽  
Anne Bowlin ◽  
Gopinath Venugopal ◽  
Charity L. Washam ◽  
...  

Leishmanial skin lesions are characterized by inflammatory hypoxia alongside the activation of hypoxia-inducible factors, HIF-1α and HIF-2α, and subsequent expression of the HIF-α target VEGF-A during Leishmania major infection. However, the factors responsible for HIF-α activation are not known. We hypothesize that hypoxia and proinflammatory stimuli contribute to HIF-α activation during infection. RNA-Seq of leishmanial lesions revealed that transcripts associated with HIF-1α signaling were induced. To determine whether hypoxia contributes to HIF-α activation, we followed the fate of myeloid cells infiltrating from the blood and into hypoxic lesions. Recruited myeloid cells experienced hypoxia when they entered inflamed lesions, and the length of time in lesions increased their hypoxic signature. To determine whether proinflammatory stimuli in the inflamed tissue can also influence HIF-α activation, we subjected macrophages to various proinflammatory stimuli and measured VEGF-A. While parasites alone did not induce VEGF-A, and proinflammatory stimuli only modestly induced VEGF-A, HIF-α stabilization increased VEGF-A during infection. HIF-α stabilization did not impact parasite entry, growth, or killing. Conversely, the absence of ARNT/HIF-α signaling enhanced parasite internalization. Altogether, these findings suggest that HIF-α is active during infection, and while macrophage HIF-α activation promotes lymphatic remodeling through VEGF-A production, HIF-α activation does not impact parasite internalization or control.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ho-Jun Shih ◽  
Hsin-Fang Chang ◽  
Chi-Ling Chen ◽  
Pao-Ling Torng

AbstractOvarian cancer is the most lethal gynecological cancer, and it is frequently diagnosed at advanced stages, with recurrences after treatments. Treatment failure and resistance are due to hypoxia-inducible factors (HIFs) activated by cancer cells adapt to hypoxia. IGFBP3, which was previously identified as a growth/invasion/metastasis suppressor of ovarian cancer, plays a key role in inhibiting tumor angiogenesis. Although IGFBP3 can effectively downregulate tumor proliferation and vasculogenesis, its effects are only transient. Tumors enter a hypoxic state when they grow large and without blood vessels; then, the tumor cells activate HIFs to regulate cell metabolism, proliferation, and induce vasculogenesis to adapt to hypoxic stress. After IGFBP3 was transiently expressed in highly invasive ovarian cancer cell line and heterotransplant on mice, the xenograft tumors demonstrated a transient growth arrest with de-vascularization, causing tumor cell hypoxia. Tumor re-proliferation was associated with early HIF-1α and later HIF-2α activations. Both HIF-1α and HIF-2α were related to IGFBP3 expressions. In the down-expression of IGFBP3 in xenograft tumors and transfectants, HIF-2α was the major activated protein. This study suggests that HIF-2α presentation is crucial in the switching of epithelial ovarian cancer from dormancy to proliferation states. In highly invasive cells, the cancer hallmarks associated with aggressiveness could be activated to escape from the growth restriction state.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1768
Author(s):  
Kiichi Hirota

Oxygen (O2) is an essential molecule [1] in the production of adenosine triphosphate (ATP) in cells, and a lack of energy due to O2 deficiency makes the maintenance of biological functions and human life improbable. [...]


2021 ◽  
pp. 1-13
Author(s):  
Qiu-Yu Li ◽  
Fei Liu ◽  
Xiaoxiao Tang ◽  
Haidong Fu ◽  
Jianhua Mao

<b><i>Background:</i></b> The kidney requires abundant blood supply, and oxygen is transmitted by diffusion through blood vessels. Most physiological metabolism of the kidney depends on oxygen, so it is very sensitive to oxygen. An increasing pool of evidence suggests that hypoxia is involved in almost all acute and chronic kidney diseases (CKDs). Vascular damage, tubular injury, and fibrosis are the main pathologies associated during hypoxia. Hypoxia-inducible factors (HIFs) are the main mediators during hypoxia, but their functions remain controversial. This article reviewed recent studies and described its mechanisms on renoprotection. <b><i>Summary:</i></b> HIF is degraded rapidly during under normal oxygen. But under hypoxia, HIFs accumulate and many target genes are regulated by HIFs. Homeostasis during injury is maintained through these genes. Pretreatment of HIF can protect the kidney from acute hypoxia and can improve repair, but HIF’s role in CKD and in renal tumor is still controversial. Due to its mechanism in kidney disease, many drugs toward HIFs are widely researched, even some of which have been used in clinical or in clinical research. <b><i>Key Messages:</i></b> In this review, we described the known physiological mechanisms, target genes, and renal protective roles of HIFs, and we discussed several drugs that are researched due to such renal protective roles.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lucy Wanjiku Macharia ◽  
Wanjiru Muriithi ◽  
Carlos Pilotto Heming ◽  
Dennis Kirii Nyaga ◽  
Veronica Aran ◽  
...  

Abstract Background Glioblastoma is a fatal brain tumour with a poor patient survival outcome. Hypoxia has been shown to reprogram cells towards a stem cell phenotype associated with self-renewal and drug resistance properties. Activation of hypoxia-inducible factors (HIFs) helps in cellular adaptation mechanisms under hypoxia. Similarly, miRNAs are known to be dysregulated in GBM have been shown to act as critical mediators of the hypoxic response and to regulate key processes involved in tumorigenesis. Methods Glioblastoma (GBM) cells were exposed to oxygen deprivation to mimic a tumour microenvironment and different cell aspects were analysed such as morphological changes and gene expression of miRNAs and survival genes known to be associated with tumorigenesis. Results It was observed that miR-128a-3p, miR-34-5p, miR-181a/b/c, were down-regulated in 6 GBM cell lines while miR-17-5p and miR-221-3p were upregulated when compared to a non-GBM control. When the same GBM cell lines were cultured under hypoxic microenvironment, a further 4–10-fold downregulation was observed for miR-34-5p, miR-128a-3p and 181a/b/c while a 3–6-fold upregulation was observed for miR-221-3p and 17-5p for most of the cells. Furthermore, there was an increased expression of SOX2 and Oct4, GLUT-1, VEGF, Bcl-2 and survivin, which are associated with a stem-like state, increased metabolism, altered angiogenesis and apoptotic escape, respectively. Conclusion This study shows that by mimicking a tumour microenvironment, miRNAs are dysregulated, stemness factors are induced and alteration of the survival genes necessary for the cells to adapt to the micro-environmental factors occurs. Collectively, these results might contribute to GBM aggressiveness.


2021 ◽  
Author(s):  
Yu Chen ◽  
Claudia Cattoglio ◽  
Gina Dailey ◽  
Qiulin Zhu ◽  
Robert Tjian ◽  
...  

Transcription factors (TFs) are classically attributed a modular construction, containing well-structured sequence specific DNA-binding domains (DBDs) paired with disordered activation domains (ADs) responsible for protein-protein interactions targeting cofactors or the core transcription initiation machinery. However, this simple division of labor model struggles to explain why TFs with identical DNA binding sequence specificity determined in vitro exhibit distinct non-overlapping binding profiles in vivo. The family of Hypoxia-Inducible Factors (HIFs) offer a stark example: aberrantly expressed in several cancer types, HIF-1α and HIF-2α subunit isoforms recognize the same DNA motif in vitro — the hypoxia response element (HRE) — but only share a subset of their target genes in vivo, while eliciting contrasting effects on cancer development and progression under certain circumstances. To probe the mechanisms mediating isoform-specific gene regulation, we used live cell single particle tracking (SPT) to investigate HIF nuclear dynamics and how they change upon genetic perturbation or drug treatment. We found that HIF-α subunits and their dimerization partner HIF-1β exhibit distinct diffusion and binding characteristics that are exquisitely sensitive to concentration and subunit stoichiometry. Using domain-swap variants, mutations, and a HIF-2α specific inhibitor, we found that although the DBD and dimerization domains are important, a major determinant of chromatin binding and diffusion behavior is dictated by the AD-containing intrinsically disordered regions. These findings reveal a previously unappreciated role of IDRs in regulating the TF search process that may play a role in selective functional target site binding on chromatin.


Medicina ◽  
2021 ◽  
Vol 57 (11) ◽  
pp. 1161
Author(s):  
Costantino Balestra ◽  
Jacek Kot

Depending on the oxygen partial pressure in a tissue, the therapeutic effect of oxygenation can vary from simple substance substitution up to hyperbaric oxygenation when breathing hyperbaric oxygen at 2.5–3.0 ATA. Surprisingly, new data showed that it is not only the oxygen supply that matters as even a minimal increase in the partial pressure of oxygen is efficient in triggering cellular reactions by eliciting the production of hypoxia-inducible factors and heat-shock proteins. Moreover, it was shown that extreme environments could also interact with the genome; in fact, epigenetics appears to play a major role in extreme environments and exercise, especially when changes in oxygen partial pressure are involved. Hyperbaric oxygen therapy is, essentially, “intermittent oxygen” exposure. We must investigate hyperbaric oxygen with a new paradigm of treating oxygen as a potent stimulus of the molecular network of reactions.


Sign in / Sign up

Export Citation Format

Share Document