Transcriptional and translational dynamics during maternal‐to‐zygotic transition in early chicken development

2018 ◽  
Vol 32 (4) ◽  
pp. 2004-2011 ◽  
Author(s):  
Young Sun Hwang ◽  
Minseok Seo ◽  
Sohyun Bang ◽  
Heebal Kim ◽  
Jae Yong Han
Author(s):  
Peng Zhao ◽  
Xuemei Zhou ◽  
Kun Shen ◽  
Zhenzhen Liu ◽  
Tianhe Cheng ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
pp. 460
Author(s):  
Huan Ou-Yang ◽  
Shinn-Chih Wu ◽  
Li-Ying Sung ◽  
Shiao-Hsuan Yang ◽  
Shang-Hsun Yang ◽  
...  

The maternal-to-zygotic transition (MZT), which controls maternal signaling to synthesize zygotic gene products, promotes the preimplantation development of mouse zygotes to the two-cell stage. Our previous study reported that mouse granzyme g (Gzmg), a serine-type protease, is required for the MZT. In this study, we further identified the maternal factors that regulate the Gzmg promoter activity in the zygote to the two-cell stage of mouse embryos. A full-length Gzmg promoter from mouse genomic DNA, FL-pGzmg (−1696~+28 nt), was cloned, and four deletion constructs of this Gzmg promoter, Δ1-pGzmg (−1369~+28 nt), Δ2-pGzmg (−939~+28 nt), Δ3-pGzmg (−711~+28 nt) and Δ4-pGzmg (−417~+28 nt), were subsequently generated. Different-sized Gzmg promoters were used to perform promoter assays of mouse zygotes and two-cell stage embryos. The results showed that Δ4-pGzmg promoted the highest expression level of the enhanced green fluorescent protein (EGFP) reporter in the zygotes and two-cell embryos. The data suggested that time-specific transcription factors upregulated Gzmg by binding cis-elements in the −417~+28-nt Gzmg promoter region. According to the results of the promoter assay, the transcription factor binding sites were predicted and analyzed with the JASPAR database, and two transcription factors, signal transducer and activator of transcription 3 (STAT3) and GA-binding protein alpha (GABPα), were identified. Furthermore, STAT3 and GABPα are expressed and located in zygote pronuclei and two-cell nuclei were confirmed by immunofluorescence staining; however, only STAT3 was recruited to the mouse zygote pronuclei and two-cell nuclei injected with the Δ4-pGzmg reporter construct. These data indicated that STAT3 is a maternal transcription factor and may upregulate Gzmg to promote the MZT. Furthermore, treatment with a STAT3 inhibitor, S3I-201, caused mouse embryonic arrest at the zygote and two-cell stages. These results suggest that STAT3, a maternal protein, is a critical transcription factor and regulates Gzmg transcription activity in preimplantation mouse embryos. It plays an important role in the maternal-to-zygotic transition during early embryonic development.


1998 ◽  
Vol 76 (1-2) ◽  
pp. 151-155 ◽  
Author(s):  
Knut Niss ◽  
Achim Leutz

2018 ◽  
Vol 100 (2) ◽  
pp. 331-350 ◽  
Author(s):  
Jocelyn M Cuthbert ◽  
Stewart J Russell ◽  
Kenneth L White ◽  
Abby D Benninghoff

2011 ◽  
Vol 21 (8) ◽  
pp. 1328-1338 ◽  
Author(s):  
Håvard Aanes ◽  
Cecilia L. Winata ◽  
Chi Ho Lin ◽  
Jieqi P. Chen ◽  
Kandhadayar G. Srinivasan ◽  
...  

2020 ◽  
Author(s):  
Ying Wang ◽  
Tianhao Feng ◽  
Xiaodan Shi ◽  
Siyu Liu ◽  
Zerui Wang ◽  
...  

AbstractInfertility affects 10% - 15% of families worldwide. However, the pathogenesis of female infertility caused by abnormal early embryonic development is not clear. We constructed a mouse model (Pabpn1l -/-) simulating the splicing abnormality of human PABPN1L and found that the female was sterile and the male was fertile. The Pabpn1l -/- oocytes can be produced, ovulated and fertilized normally, but cannot develop beyond the 2-cell stage. Using RNA-Seq, we found a large-scale upregulation of RNA in Pabpn1l -/- MII oocytes. Of the 2401 transcripts upregulated in Pabpn1l-/- MII oocytes, 1523 transcripts (63.4%) were also upregulated in Btg4 -/- MII oocytes, while only 53 transcripts (2.2%) were upregulated in Ythdf2 -/- MII oocytes. We documented that transcripts in zygotes derived from Pabpn1l -/- oocytes have a longer poly(A) tail than the control group, a phenomenon similar to that in Btg4-/- mice. Surprisingly, the poly(A) tail of these mRNAs was significantly shorter in the Pabpn1l -/- MII oocytes than in the Pabpn1l +/+. These results suggest that PABPN1L is involved in BTG4-mediated maternal mRNA degradation, and may antagonize poly(A) tail shortening in oocytes independently of its involvement in maternal mRNA degradation. Thus, PABPN1L variants could be a genetic marker of female infertility.


Development ◽  
1991 ◽  
Vol 113 (3) ◽  
pp. 959-967 ◽  
Author(s):  
H. Inuzuka ◽  
C. Redies ◽  
M. Takeichi

R-cadherin is a newly identified member of the cadherin family of cell adhesion receptors. The expression of R-cadherin in early chicken embryos was studied using affinity-purified antibodies to this molecule, comparing it with that of N-cadherin. Immunoblot analysis of various organs of 10.5-day embryos showed that R-cadherin is most abundantly expressed in the retina and brain. Immunostaining of the cervical and thoracic regions of embryos revealed that R- and N-cadherin are expressed in all neural tissues. In the neural tube, R-cadherin appears at around stage 21, although N-cadherin expression begins at a much earlier stage. The distribution of R-cadherin in the neural tube differs from that of N-cadherin; for example, some regions of the tube express only R-cadherin, and other regions only N-cadherin. In the peripheral ganglia, these two cadherins are also expressed in different patterns which change during development. Some mesenchymal tissues including the notochord, the myotome, myotubes and perichondria also express these cadherins, again in different patterns. Thus, R- and N-cadherin are differentially expressed in all the tissues examined, and they may contribute to the spatial segregation of heterogeneous cells in a tissue.


2020 ◽  
Vol 11 ◽  
Author(s):  
Min Chen ◽  
Shaolan Zhang ◽  
Zhongxian Xu ◽  
Jian Gao ◽  
Shailendra Kumar Mishra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document