scholarly journals High molecular weight amyloid β 1‐42 oligomers induce neurotoxicity via plasma membrane damage

2019 ◽  
Vol 33 (8) ◽  
pp. 9220-9234 ◽  
Author(s):  
Taro Yasumoto ◽  
Yusaku Takamura ◽  
Mayumi Tsuji ◽  
Takahiro Watanabe‐Nakayama ◽  
Keiko Imamura ◽  
...  
2020 ◽  
Vol 16 (S2) ◽  
Author(s):  
Taro Yasumoto ◽  
Yusaku Takamura ◽  
Mayumi Tsuji ◽  
Takahiro Nakayama ◽  
Keiko Imamura ◽  
...  

2021 ◽  
Vol 7 (13) ◽  
pp. eabc6345
Author(s):  
Shrawan Kumar Mageswaran ◽  
Wei Yuan Yang ◽  
Yogaditya Chakrabarty ◽  
Catherine M. Oikonomou ◽  
Grant J. Jensen

Cryo–electron tomography (cryo-ET) provides structural context to molecular mechanisms underlying biological processes. Although straightforward to implement for studying stable macromolecular complexes, using it to locate short-lived structures and events can be impractical. A combination of live-cell microscopy, correlative light and electron microscopy, and cryo-ET will alleviate this issue. We developed a workflow combining the three to study the ubiquitous and dynamic process of shedding in response to plasma membrane damage in HeLa cells. We found filopodia-like protrusions enriched at damage sites and acting as scaffolds for shedding, which involves F-actin dynamics, myosin-1a, and vacuolar protein sorting 4B (a component of the ‘endosomal sorting complex required for transport’ machinery). Overall, shedding is more complex than current models of vesiculation from flat membranes. Its similarities to constitutive shedding in enterocytes argue for a conserved mechanism. Our workflow can also be adapted to study other damage response pathways and dynamic cellular events.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Dustin A. Ammendolia ◽  
William M. Bement ◽  
John H. Brumell

AbstractPlasma membrane integrity is essential for cellular homeostasis. In vivo, cells experience plasma membrane damage from a multitude of stressors in the extra- and intra-cellular environment. To avoid lethal consequences, cells are equipped with repair pathways to restore membrane integrity. Here, we assess plasma membrane damage and repair from a whole-body perspective. We highlight the role of tissue-specific stressors in health and disease and examine membrane repair pathways across diverse cell types. Furthermore, we outline the impact of genetic and environmental factors on plasma membrane integrity and how these contribute to disease pathogenesis in different tissues.


Biology Open ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. bio035287 ◽  
Author(s):  
Lars Nygård Skalman ◽  
Mikkel R. Holst ◽  
Elin Larsson ◽  
Richard Lundmark

1998 ◽  
Vol 110 (1) ◽  
pp. 79-83 ◽  
Author(s):  
Sally H. Ibbotson ◽  
Christopher R. Lambert ◽  
Michael N. Moran ◽  
Mary C. Lynch ◽  
Irene E. Kochevar

2019 ◽  
Author(s):  
Kai S. Beckwith ◽  
Marianne S. Beckwith ◽  
Sindre Ullmann ◽  
Ragnhild Sætra ◽  
Haelin Kim ◽  
...  

AbstractMycobacterium tuberculosis (Mtb) is a major global health problem and causes extensive cytotoxicity in patient cells and tissues. Here we define an NLRP3, caspase-1 and gasdermin D-mediated pathway to pyroptosis in human monocytes following exposure to Mtb. We demonstrate an ESX-1 mediated, contact-induced plasma membrane (PM) damage response that occurs during phagocytosis or from the cytosolic side of the PM after phagosomal rupture in Mtb infected cells. This PM injury in turn causes K+ efflux and activation of NLRP3 dependent IL-1β release and pyroptosis, facilitating the spread of Mtb to neighbouring cells. Further we reveal a dynamic interplay of pyroptosis with ESCRT-mediated PM repair. Collectively, these findings reveal a novel mechanism for pyroptosis and spread of infection acting through dual PM disturbances both during and after phagocytosis. We also highlight dual PM damage as a common mechanism utilized by other NLRP3 activators that have previously been shown to act through lysosomal damage.Graphical abstract


2019 ◽  
Vol 6 (4) ◽  
pp. 1219-1232 ◽  
Author(s):  
Saeed Nazemidashtarjandi ◽  
Amir M. Farnoud

Plasma membrane damage is one of the primary mechanisms through which engineered nanoparticles induce cell toxicity.


2006 ◽  
Vol 82 (6) ◽  
pp. 1712-1720 ◽  
Author(s):  
Nicole Cauchon ◽  
Moni Nader ◽  
Ghassan Bkaily ◽  
Johan E. Lier ◽  
Darel Hunting

Sign in / Sign up

Export Citation Format

Share Document