One-day Hypothermic Preservation of Isolated Hearts with Halothane Improves Cardiac Function Better than Low Calcium

1995 ◽  
Vol 83 (5) ◽  
pp. 1065-1077 ◽  
Author(s):  
David F. Stowe ◽  
Helmut Habazettl ◽  
Bernhard M. Graf ◽  
John P. Kampine ◽  
Zeljko J. Bosnjak

Abstract Background Halothane exerts a potent negative inotropic effect on the heart and mimics many of the cardiac effects of lowered extracellular CaCl2. Reduced slow inward Calcium2+ current and sarcoplasmic reticular effects on intracellular Calcium2+ are likely involved. The authors reported previously that halothane protects against hypoxic and ischemia reperfusion injury in isolated hearts. The aim of this isolated heart study was to compare protective effects of halothane and low CaCl sub 2 (0.5 mM) administered during 1 day of hypothermic perfusion on return of normothermic perfusion.

2019 ◽  
Vol 20 (14) ◽  
pp. 3502 ◽  
Author(s):  
Ahmed M. Darwesh ◽  
Hedieh Keshavarz-Bahaghighat ◽  
K. Lockhart Jamieson ◽  
John M. Seubert

Activation of the nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome cascade has a role in the pathogenesis of ischemia/reperfusion (IR) injury. There is growing evidence indicating cytochrome p450 (CYP450)-derived metabolites of n-3 and n-6 polyunsaturated fatty acids (PUFAs) possess both adverse and protective effects in the heart. CYP-derived epoxy metabolites are rapidly hydrolyzed by the soluble epoxide hydrolase (sEH). The current study hypothesized that the cardioprotective effects of inhibiting sEH involves limiting activation of the NLRP3 inflammasome. Isolated hearts from young wild-type (WT) and sEH null mice were perfused in the Langendorff mode with either vehicle or the specific sEH inhibitor t-AUCB. Improved post-ischemic functional recovery and better mitochondrial respiration were observed in both sEH null hearts or WT hearts perfused with t-AUCB. Inhibition of sEH markedly attenuated the activation of the NLRP3 inflammasome complex and limited the mitochondrial localization of the fission protein dynamin-related protein-1 (Drp-1) triggered by IR injury. Cardioprotective effects stemming from the inhibition of sEH included preserved activities of both cytosolic thioredoxin (Trx)-1 and mitochondrial Trx-2 antioxidant enzymes. Together, these data demonstrate that inhibiting sEH imparts cardioprotection against IR injury via maintaining post-ischemic mitochondrial function and attenuating a detrimental innate inflammatory response.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Rui-Hua Li ◽  
Jin Li ◽  
Shi-Lian Kan ◽  
Xi-Nan Zhang

The authors aim to investigate protective effects of fasciotomy against ischemia reperfusion injury of skeletal muscle in rabbit and to compare the treatment effects of prereperfusion + fasciotomy and fasciotomy + postreperfusion against ischemia reperfusion injury of skeletal muscle. 24 healthy male Japanese white rabbits were randomly divided into 3 groups, and 4 hours’ ischemia was established in these rabbits through surgery. Six hours’ reperfusion was performed in group A; reperfusion + postfasciotomy was performed in group B; and prefasciotomy + reperfusion was performed in group C. Result showed that prefasciotomy and postfasciotomy could protect skeletal muscle against ischemia reperfusion injury, reduced MDA (malondialdehyde) expression, MPO (myeloperoxidase) expression, and apoptosis of muscle in the reperfused areas, increased Bcl-2 expression, and decreased Bax expression. The MDA and MPO levels in group B and group C were significantly lower than those in group A, and MDA and MPO levels in group C were significantly lower than those in group B. Prefasciotomy and postfasciotomy could protect against ischemia reperfusion injury in skeletal muscle. The protective effects of prefasciotomy against ischemia reperfusion injury are better than postfasciotomy.


2007 ◽  
Vol 85 (12) ◽  
pp. 1248-1253 ◽  
Author(s):  
Zhifei Zhang ◽  
Haixia Huang ◽  
Ping Liu ◽  
Chaoshu Tang ◽  
Jun Wang

The present study was undertaken to investigate the protective effect of H2S against myocardial ischemia–reperfusion (I/R) injury and its possible mechanism by using isolated heart perfusion and patch clamp recordings. Rat isolated hearts were Langendorff-perfused and subjected to a 30-minute ischemia insult followed by a 30-minute reperfusion. The heart function was assessed by measuring the LVDP, ±dP/dtmax, and the arrhythmia score. The results showed that the treatment of hearts with a H2S donor (40 μmol/L NaHS) during reperfusion resulted in significant improvement in heart function compared with the I/R group (LVDP recovered to 85.0% ± 6.4% vs. 35.0% ± 6.1%, +dP/dtmax recovered to 80.9% ± 4.2% vs. 43.0% ± 6.4%, and –dP/dtmax recovered to 87.4% ± 7.3% vs. 53.8% ± 4.9%; p < 0.01). The arrhythmia scores also improved in the NaHS group compared with the I/R group (1.5 ± 0.2 vs. 4.0 ± 0.4, respectively; p < 0.001). The cardioprotective effect of NaHS during reperfusion could be blocked by an ATP-sensitive potassium channel (KATP) blocker (10 μmol/L glibenclamide). In single cardiac myocytes, NaHS increased the open probability of KATP channels from 0.07 ± 0.03 to 0.15 ± 0.08 after application of 40 μmol/L NaHS and from 0.07 ± 0.03 to 0.36 ± 0.15 after application of 100 μmol/L NaHS. These findings provide the first evidence that H2S increases the open probability of KATP in cardiac myocytes, which may be responsible for cardioprotection against I/R injury during reperfusion.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Jian-Ping Zhang ◽  
Wei-Jing Zhang ◽  
Miao Yang ◽  
Hua Fang

Abstract Background Propofol, an intravenous anesthetic, was proven to protect against lung ischemia/reperfusion (I/R) injury. However, the detailed mechanism of Propofol in lung I/R injury is still elusive. This study was designed to explore the therapeutic effects of Propofol, both in vivo and in vitro, on lung I/R injury and the underlying mechanisms related to metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/microRNA-144 (miR-144)/glycogen synthase kinase-3β (GSK3β). Methods C57BL/6 mice were used to establish a lung I/R injury model while pulmonary microvascular endothelial cells (PMVECs) were constructed as hypoxia/reperfusion (H/R) cellular model, both of which were performed with Propofol treatment. Gain- or loss-of-function approaches were subsequently employed, followed by observation of cell apoptosis in lung tissues and evaluation of proliferative and apoptotic capabilities in H/R cells. Meanwhile, the inflammatory factors, autophagosomes, and autophagy-related proteins were measured. Results Our experimental data revealed that Propofol treatment could decrease the elevated expression of MALAT1 following I/R injury or H/R induction, indicating its protection against lung I/R injury. Additionally, overexpressing MALAT1 or GSK3β promoted the activation of autophagosomes, proinflammatory factor release, and cell apoptosis, suggesting that overexpressing MALAT1 or GSK3β may reverse the protective effects of Propofol against lung I/R injury. MALAT1 was identified to negatively regulate miR-144 to upregulate the GSK3β expression. Conclusion Overall, our study demonstrated that Propofol played a protective role in lung I/R injury by suppressing autophagy and decreasing release of inflammatory factors, with the possible involvement of the MALAT1/miR-144/GSK3β axis.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 923
Author(s):  
Yuan Yuan ◽  
Yanyu Zhai ◽  
Jingjiong Chen ◽  
Xiaofeng Xu ◽  
Hongmei Wang

Kaempferol has been shown to protect cells against cerebral ischemia/reperfusion injury through inhibition of apoptosis. In the present study, we sought to investigate whether ferroptosis is involved in the oxygen-glucose deprivation/reperfusion (OGD/R)-induced neuronal injury and the effects of kaempferol on ferroptosis in OGD/R-treated neurons. Western blot, immunofluorescence, and transmission electron microscopy were used to analyze ferroptosis, whereas cell death was detected using lactate dehydrogenase (LDH) release. We found that OGD/R attenuated SLC7A11 and glutathione peroxidase 4 (GPX4) levels as well as decreased endogenous antioxidants including nicotinamide adenine dinucleotide phosphate (NADPH), glutathione (GSH), and superoxide dismutase (SOD) in neurons. Notably, OGD/R enhanced the accumulation of lipid peroxidation, leading to the induction of ferroptosis in neurons. However, kaempferol activated nuclear factor-E2-related factor 2 (Nrf2)/SLC7A11/GPX4 signaling, augmented antioxidant capacity, and suppressed the accumulation of lipid peroxidation in OGD/R-treated neurons. Furthermore, kaempferol significantly reversed OGD/R-induced ferroptosis. Nevertheless, inhibition of Nrf2 by ML385 blocked the protective effects of kaempferol on antioxidant capacity, lipid peroxidation, and ferroptosis in OGD/R-treated neurons. These results suggest that ferroptosis may be a significant cause of cell death associated with OGD/R. Kaempferol provides protection from OGD/R-induced ferroptosis partly by activating Nrf2/SLC7A11/GPX4 signaling pathway.


2014 ◽  
Vol 6 (1) ◽  
pp. 46 ◽  
Author(s):  
AhmetA Sancaktutar ◽  
MehmetN Bodakci ◽  
NamıkK Hatipoglu ◽  
Kemal Basarılı ◽  
Haluk Soylemez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document