Halothane and Isoflurane Increase Spontaneous but Reduce the N-methyl-D-aspartate–evoked Dopamine Release in Rat Striatal Slices 

1999 ◽  
Vol 91 (6) ◽  
pp. 1788-1788 ◽  
Author(s):  
Hawa Keita ◽  
Danielle Henzel-Rouellé ◽  
Hervé Dupont ◽  
Jean-Marie Desmonts ◽  
Jean Mantz

Background Experimental data suggest that volatile anesthetics induce significant changes in extracellular dopamine concentrations in the striatum, a restricted but functionally important brain area. In the present study, the authors used a superfused slice preparation to examine the effects of halothane and isoflurane on both spontaneous and N-methyl-D-aspartate (NMDA)-evoked dopamine release in the striatum, and whether these effects involved actions of these anesthetics mediated by gamma-aminobutyric acid receptors in this structure. Methods Radioactivity collected from 5-min fractions was compared in the absence (basal release) or presence (evoked release) of NMDA alone and combined with various pharmacologic or anesthetic agents in slices of the dorsolateral striatum and synaptosomes of the whole striatum preloaded with 3H-dopamine and superfused with artificial cerebrospinal fluid. Results In tetrodotoxin-treated striatal slices, halothane and isoflurane significantly increased dopamine basal release (EC50 = 0.33 mM and 0.41 mM for halothane and isoflurane, respectively). Both agents decreased the NMDA-evoked dopamine release in both the absence (IC50 = 0.15 mM and 0.14 mM for halothane and isoflurane, respectively) and presence (IC50 = 0.15 mM for both halothane and isoflurane) of tetrodotoxin in slices, and in synaptosomes (IC50 = 0.19 mM for both halothane and isoflurane). NMDA-induced dopamine release was significantly enhanced by bicuculline, a gamma-aminobutyric acid receptor antagonist. Halothane and isoflurane inhibitory effects on NMDA-evoked dopamine release were significantly reduced in the presence of bicuculline. Conclusion These results indicate that halothane and isoflurane decrease the NMDA-evoked dopamine release by acting directly at dopamine terminals in striatal slices. They support the involvement of both depression of presynaptic NMDA receptor-mediated responses and enhancement of gamma-aminobutyric acid receptor-mediated responses in these effects.

2021 ◽  
Author(s):  
Tsukasa Kochiyama ◽  
Izumi Kawagoe ◽  
Ai Yamaguchi ◽  
Masataka Fukuda ◽  
Masakazu Hayashida

Abstract Background: Gamma-aminobutyric acid type A (GABAA) receptors are thought to play a role in the functioning of the immune system. GABAA receptors have 19 types of subunits, the components of which determine their physiological functions. However, the subunits that are expressed in immune cells during inflammation have not been fully investigated. Recent reports have shown that anesthetic agents may affect the gene expression of GABAA receptors subunits in immune cells. Therefore, we aimed to investigate the changes in GABAA receptor subunit gene expression during macrophage differentiation and propofol administration in order to clarify the relationship between the expression of GABAA receptors and the immunomodulatory effect of propofol.Methods: Human acute monocytic leukemia (THP-1) cells were differentiated into macrophage-like cells (M0 THP-1); subsequently, M0 THP-1 cells were differentiated into inflammatory M1 macrophage-like cells (M1 THP-1). Propofol was administered during the differentiation into M1 THP-1 cells. Using reverse transcriptase polymerase chain reaction, we examined which GABAA receptor subunit genes were expressed and whether there were changes in the gene expression during macrophage differentiation and propofol administration in THP-1 cells.Results: The expression of the α1, α4, β1, β2, γ1, and γ2 subunits increased during differentiation into M0 THP-1 cells. The expression of the α1, α4, β1, β2, γ2, and δ subunits decreased and that of the γ1 subunit increased during differentiation into M1 THP-1 cells. The gene expression of the α1, α4, and β2 subunits increased upon administering propofol during differentiation into M1 THP-1 cells.Conclusions: The gene expression of GABAA receptor subunits changed during macrophage differentiation in THP-1 cells. The expressions of α1 and α4 increased following propofol administration during the differentiation into M1 THP-1 cells, which may indicate that the GABAA receptor is involved in the immunosuppressive effects of propofol. This study can help in the choice of anesthetic agents for proinflammatory conditions such as highly-invasive surgery.


2004 ◽  
Vol 80 (3) ◽  
pp. 129-142 ◽  
Author(s):  
María S. Bianchi ◽  
Paolo N. Catalano ◽  
María M. Bonaventura ◽  
Patricia Silveyra ◽  
Bernhard Bettler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document