scholarly journals IS AIR FILTRATION AN EFFECTIVE INTERVENTION FOR RESIDENTIAL INDOOR PARTICULATE MATTER EXPOSURE?

Epidemiology ◽  
1998 ◽  
Vol 9 (Supplement) ◽  
pp. S164
Author(s):  
T J Buckley ◽  
C Beck ◽  
L Wallace
2019 ◽  
Vol 123 (4) ◽  
pp. 375-380.e3 ◽  
Author(s):  
Syed Hussain ◽  
Sarah Parker ◽  
Karen Edwards ◽  
Joanne Finch ◽  
Antoine Jeanjean ◽  
...  

2017 ◽  
Vol 39 (02) ◽  
pp. 133-140 ◽  
Author(s):  
Adriano Silva-Renno ◽  
Guilherme Baldivia ◽  
Manoel Oliveira-Junior ◽  
Maysa Brandao-Rangel ◽  
Elias El-Mafarjeh ◽  
...  

AbstractAir pollution is a growing problem worldwide, inducing and exacerbating several diseases. Among the several components of air pollutants, particulate matter (PM), especially thick (10–2.5 µm; PM 10) and thin (≤2.5 µm; PM 2.5), are breathable particles that easily can be deposited within the lungs, resulting in pulmonary and systemic inflammation. Although physical activity is strongly recommended, its effects when practiced in polluted environments are questionable. Therefore, the present study evaluated the pulmonary and systemic response of concomitant treadmill training with PM 2.5 and PM 10 exposure. Treadmill training inhibited PM 2.5- and PM 10-induced accumulation of total leukocytes (p<0.001), neutrophils (p<0.001), macrophages (p<0.001) and lymphocytes (p<0.001) in bronchoalveolar lavage (BAL), as well as the BAL levels of IL-1beta (p<0.001), CXCL1/KC (p<0.001) and TNF-alpha (p<0.001), whereas it increased IL-10 levels (p<0.05). Similar effects were observed on accumulation of polymorphonuclear (p<0.01) and mononuclear (p<0.01) cells in the lung parenchyma and in the peribronchial space. Treadmill training also inhibited PM 2.5- and PM 10-induced systemic inflammation, as observed in the number of total leukocytes (p<0.001) and in the plasma levels of IL-1beta (p<0.001), CXCL1/KC (p<0.001) and TNF-alpha (p<0.001), whereas it increased IL-10 levels (p<0.001). Treadmill training inhibits lung and systemic inflammation induced by particulate matter.


Author(s):  
Tamar Wainstock ◽  
Israel Yoles ◽  
Ruslan Sergienko ◽  
Itai Kloog ◽  
Eyal Sheiner

2021 ◽  
Vol 13 (15) ◽  
pp. 8263
Author(s):  
Marius Bodor

An important aspect of air pollution analysis consists of the varied presence of particulate matter in analyzed air samples. In this respect, the present work aims to present a case study regarding the evolution in time of quantified particulate matter of different sizes. This study is based on data acquisitioned in an indoor location, already used in a former particulate matter-related article; thus, it can be considered as a continuation of that study, with the general aim to demonstrate the necessity to expand the existing network for pollution monitoring. Besides particle matter quantification, a correlation of the obtained results is also presented against meteorological data acquisitioned by the National Air Quality Monitoring Network. The transformation of quantified PM data in mass per volume and a comparison with other results are also addressed.


Sign in / Sign up

Export Citation Format

Share Document