Computed Tomography of the Normal Soft Tissues of the Wrist

1983 ◽  
Vol 18 (6) ◽  
pp. 546-551 ◽  
Author(s):  
ROBERT O. CONE ◽  
ROBERT SZABO ◽  
DONALD RESNICK ◽  
RICHARD GELBERMAN ◽  
JULIO TALEISNIK ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sang Wha Kim ◽  
Adams Hei Long Yuen ◽  
Cherry Tsz Ching Poon ◽  
Joon Oh Hwang ◽  
Chang Jun Lee ◽  
...  

AbstractDue to their important phylogenetic position among extant vertebrates, sharks are an invaluable group in evolutionary developmental biology studies. A thorough understanding of shark anatomy is essential to facilitate these studies and documentation of this iconic taxon. With the increasing availability of cross-sectional imaging techniques, the complicated anatomy of both cartilaginous and soft tissues can be analyzed non-invasively, quickly, and accurately. The aim of this study is to provide a detailed anatomical description of the normal banded houndshark (Triakis scyllium) using computed tomography (CT) and magnetic resonance imaging (MRI) along with cryosection images. Three banded houndsharks were scanned using a 64-detector row spiral CT scanner and a 3 T MRI scanner. All images were digitally stored and assessed using open-source Digital Imaging and Communications in Medicine viewer software in the transverse, sagittal, and dorsal dimensions. The banded houndshark cadavers were then cryosectioned at approximately 1-cm intervals. Corresponding transverse cryosection images were chosen to identify the best anatomical correlations for transverse CT and MRI images. The resulting images provided excellent detail of the major anatomical structures of the banded houndshark. The illustrations in the present study could be considered as a useful reference for interpretation of normal and pathological imaging studies of sharks.


2016 ◽  
Vol 23 (2) ◽  
pp. 600-605 ◽  
Author(s):  
Jianbo Jian ◽  
Hao Yang ◽  
Xinyan Zhao ◽  
Ruijiao Xuan ◽  
Yujie Zhang ◽  
...  

Visualization of the microvascular network and thrombi in the microvasculature is a key step to evaluating the development of tumor growth and metastasis, and influences treatment selection. X-ray phase-contrast computed tomography (PCCT) is a new imaging technique that can detect minute changes of density and reveal soft tissues discrimination at micrometer-scale resolution. In this study, six human resected hepatocellular carcinoma (HCC) tissues were investigated with PCCT. A histological stain was added to estimate the accuracy of PCCT. The results showed that the fine structures of the microvasculature (measuring 30–100 µm) and thrombi in tiny blood vessels were displayed clearly on imaging the HCC tissues by PCCT. Moreover, density distributions of the thrombi were obtained, which could be reliably used to distinguish malignant from benign thrombi in HCC. In conclusion, PCCT can clearly show the three-dimensional subtle structures of HCC that cannot be detected by conventional absorption-based computed tomography and provides a new method for the imageology of HCC.


2018 ◽  
Vol 40 (4) ◽  
pp. 457-464 ◽  
Author(s):  
Fred T. Finney ◽  
Aaron McPheters ◽  
Natalie V. Singer ◽  
Jaron C. Scott ◽  
Karl J. Jepsen ◽  
...  

Background: Lesser toe plantar plate attenuation or disruption is being increasingly implicated in a variety of common clinical conditions. A multitude of surgical techniques and devices have been recently developed to facilitate surgical repair of the plantar plate. However, the microvascular anatomy, and therefore the healing potential in large part, has not been defined. We investigated the microvasculature of the plantar plate by employing a novel technique involving microvascular perfusion and nano–computed tomography (nano-CT) imaging. Methods: Twelve human adult cadaveric lower extremities were amputated distal to the knee. The anterior and posterior tibial arteries were perfused with a barium solution. The soft tissues of each foot were then counterstained with phosphomolybdic acid (PMA). The second through fourth toe metatarsophalangeal (MTP) joints of 12 feet were imaged with nano-CT at 14-micron resolution. Images were then reconstructed for analysis of the plantar plate microvasculature and calculation of the vascular density along the length of the plantar plate. Results: A microvascular network extends from the surrounding soft tissues at the attachments of the plantar plate on both the metatarsal and proximal phalanx. The midsubstance of the plantar plate appears to be relatively hypovascular. Analysis of the vascular density along the length of the plantar plate demonstrated a consistent trend with increased vascular density at approximately the proximal 29% and distal 22% of the plantar plate. Conclusion: There is a vascular network extending from the surrounding soft tissues into the proximal and distal attachments of the plantar plate. Clinical relevance: The hypovascular midportion of the plantar plate may play an important role in the underlying pathoanatomy and pathophysiology of this area. These findings may have significant clinical implications for the reparative potential of this region and the surgical procedures currently described to accomplish anatomic plantar plate repair.


2020 ◽  
Vol 6 (4) ◽  
pp. 41-45
Author(s):  
Sergey V. Leonov ◽  
Julia P. Shakiryanova

Background: The article presents our own experience of using computer tomography for identification of individuals with known results. Aims: The aim of the study was to verify the possibility of performing an identification study using a three-dimensional model obtained from computed tomography of the head. Identification was performed using a three-dimensional model of the head, based on computer tomography sections made in various projections, with a step of 1.231.25 mm. Two-dimensional images of the face (photos) were used for comparison. All comparative studies were conducted using approved methods of craniofacial and portrait identification: by reference points and contours. The experiment used a computer program that allows you to export DICOM-files of computed tomography results to other formats (InVesalius), as well as computer programs that directly work with the research objects (Autodesk 3ds Max, alternative programs Adobe Photoshop, Smith Micro Poser Pro). Results: In the course of research, it was found that, having computer tomography data of the head, it is possible to conduct identification studies on the following parameters: on the reconstructed three-dimensional model of the soft tissues of the face, on the three-dimensional model of the skull (craniofacial identification), on the features of the structure of the ear. Conclusion: Positive results were obtained when comparing objects, which makes it advisable to use them in practical and scientific activities.


2018 ◽  
Vol 12 (1) ◽  
pp. 366-376
Author(s):  
Rahul Tiwari ◽  
P. Srinivas Chakravarthi ◽  
Vivekanand S. Kattimani ◽  
Krishna Prasad Lingamaneni

Background: Facial appearance is an important factor, affects social and psychological well-being. The ideal positioning of jaws and soft tissues is crucial during orthognathic surgery for a better outcome, but the response of facial soft tissues does not always reflect the exact movements of the underlying jaws in 1:1 ratio. So, soft tissue changes following orthognathic surgery require utmost attention during surgical correction to make successful treatment. Aims and Objectives: Evaluation of perioral soft tissue changes after orthognathic surgical procedures. The objectives of the study were to assess and compare pre and post-operative perioral soft tissue changes of lip width, nasolabial and mentolabial angle using Three Dimensional Computed Tomography scan (3DCT). Patient and Methods: The study involved ten patients for evaluation requiring orthognathic surgical procedures (maxillary or mandibular anteroposterior excess or deficiency, transverse deformities, vertical maxillary excess and facial asymmetry) presented to the department of oral and maxillofacial surgery during 2014-2016. Pre and post-operative 3DCT scan were taken after 12 months using iCT 256 slice whole body CT scanner and evaluated for changes using Dicom PMS D view. Results: Significant changes were observed in nasolabial angle after maxillary advancement (1.81°) and maxillary setback procedure (2.73°). The mentolabial angle was significantly increased with mandibular setback procedures (3.27°). Mandibular advancement procedures showed both increase (3.6°) and decrease (7.6°) in mentolabial angle. Conclusion: 3DCT showed a significant difference in perioral soft tissue changes in nasolabial and mentolabial angle but no significant change was observed in lip width. 3DCT is a reliable tool for 3D assessment. The conventional thought of changes in Nasolabial angle after surgery is changing due to the underlying factors which should be considered for prediction.


2019 ◽  
Vol 9 (1) ◽  
pp. 29
Author(s):  
Guillermo Solache-Berrocal ◽  
Ana María Barral-Varela ◽  
Sheila Areces-Rodríguez ◽  
Alejandro Junco-Vicente ◽  
Aitana Vallina-Álvarez ◽  
...  

Aortic valve stenosis is a serious disease with increasing prevalence in developed countries. Research aimed at uncovering the molecular mechanisms behind its main cause, aortic valve calcification, is thus crucial for the development of future therapies. It is frequently difficult to measure the extent of mineralisation in soft tissues and some methods require the destruction of the sample. Micro-computed tomography (µCT), a non-destructive technique, was used to quantify the density and volume of calcium deposits on cusps from 57 explanted aortic valves. Conventional and immunostaining techniques were used to characterise valve tissue degeneration and the inflammatory and osteogenic stage with several markers. Although most of the analysed cusps came from severe stenosis patients, the µCT parameter bone volume/tissue volume ratio distinguished several degrees of mineralisation that correlated with the degree of structural change in the tissue and the amount of macrophage infiltration as determined by CD68 immunohistochemistry. Interestingly, exosomal markers CD63 and Alix co-localised with macrophage infiltration surrounding calcium deposits, suggesting that those vesicles could be produced at least in part by these immune cells. In conclusion, we have shown that the ex vivo assessment of aortic valve mineralisation with µCT reflects the molecular and cellular changes in pathological valves during progression towards stenosis. Thus, our results give additional validity to quantitative μCT as a convenient laboratory tool for basic research on this type of cardiovascular calcification.


2019 ◽  
Vol 48 (1) ◽  
pp. 20180072 ◽  
Author(s):  
Priscila A Lopes ◽  
Gustavo M Santaella ◽  
Carlos Augusto S Lima ◽  
Karla de Faria Vasconcelos ◽  
Francisco C Groppo

2012 ◽  
Vol 18 (2) ◽  
pp. 164-168 ◽  
Author(s):  
Peter Mygind Leth ◽  
Uffe Stolborg

ABSTRACT Background: Stab wounds are common in homicide cases. Post-mortem multislice computed tomography (PMCT) has proved to be a useful tool in forensic examinations of victims of sharp force trauma, but due the limited resolution of soft tissues, the radiological depiction of a stab channel is difficult. In this study, we have tried to obtain information about the shape of a knife blade by CT scanning contrast-filled experimentally inflicted stab wounds in various types of pig tissue. Methodology: The tissue samples were mounted on floral foam (oasis) with wooden sticks. Two contrast media were used: one was unmodified and easy flowing, and one was made more viscous with polyethylene glycol. Stab channels in ballistic soap were used for comparison. India ink-filled stab channels were investigated histologically to determine the pattern of leakage. Principal findings: We found that the shape of the stab wounds on the CT images from lung and muscle tissue did not correspond well to the shape of the inflicting knife. There was a better correspondence in the images obtained from liver, spleen and kidney. The viscous contrast medium was less likely than the thin (easy flowing) contrast medium to spill into to structures outside the stab channel, but some spillage was observed for both types of contrast medium. Air bubbles were only observed in the viscous contrast medium. Conclusion: Radiological evaluation of a contrast-filled stab wound in isolated tissue blocks did not permit the positive identification of the inflicting weapon, but it was, in tissue blocks from liver, spleen and kidney, possible to obtain a rough idea of the shape of the inflicting knife and to differentiate a knife from a screwdriver.


1978 ◽  
Vol 13 (3) ◽  
pp. 267-275 ◽  
Author(s):  
Richard A. McLeod ◽  
John J. Gisvold ◽  
David H. Stephens ◽  
John W. Beabout ◽  
Patrick F. Sheedy

Sign in / Sign up

Export Citation Format

Share Document