scholarly journals Hemorrhagic Transformation and Microvascular Integrity during Focal Cerebral Ischemia/Reperfusion

1996 ◽  
Vol 16 (6) ◽  
pp. 1373-1378 ◽  
Author(s):  
Gerhard F. Hamann ◽  
Yasushi Okada ◽  
Gregory J. del Zoppo

Hemorrhagic transformation after cerebral ischemia is a well known clinical concern. The frequency of intact basal lamina (BL), identified by laminin antigen, in hemorrhagic and nonhemorrhagic zones after middle cerebral artery occlusion (MCA:O) and 3-h MCA:O with reperfusion in adolescent male baboons was assessed. Parenchymal hemoglobin was not detected prior to 24-h reperfusion. A significant decrease in the density of laminin (BL) in hemorrhagic zones (6.2 ± 2.4) compared with nonhemorrhagic ischemic zones (10.5 ± 2.4) (p < 0.05) and nonischemic basal ganglia (17.0 ± 2.7) (p < 0.01) was observed. Time-dependent changes in BL integrity appear linked to the extravasation of blood components.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Chenlu Mao ◽  
Cheng Hu ◽  
Yudi Zhou ◽  
Rong Zou ◽  
Sha Li ◽  
...  

Cerebral ischemia/reperfusion (I/R) injury can induce the mitophagy of neurons in the ischemic brain. Electroacupuncture (EA) pretreatment has a protective effect on cerebral ischemia/reperfusion injury. However, its internal mechanism still needs to be further studied. The present study’s purpose is to investigate whether mitophagy is involved in neuroprotection elicited by EA pretreatment in a rat model of cerebral ischemia/reperfusion injury. The rats were pretreated with vehicle, EA at the Baihui (GV20) and Shuigou (GV26) acupoints 30 min daily, for 5 days consecutively prior to the focal cerebral ischemia injury induced by the middle cerebral artery occlusion (MCAO) model. Compared to the sham group, the neurological scores, infarction volume, number of autophagosomes, FUNDC1, p62, and the ratio of LC3-II/I were significantly increased but mitochondrial membrane potential and autophagy-related protein p-mTORC1 significantly decreased in the I/R group. However, EA pretreatment significantly reversed these trends. Overall, the results of this study demonstrated that EA pretreatment protected the cerebral ischemia/reperfusion injury which maybe correlated with mitophagy.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Ying Zhang ◽  
Xinling Jia ◽  
Jian Yang ◽  
Qing Li ◽  
Guofeng Yan ◽  
...  

The mechanisms by which Shaoyao-Gancao decoction (SGD) inhibits the production of inflammatory cytokines in serum and brain tissue after cerebral ischemia-reperfusion (CI-RP) in rats were investigated. A right middle cerebral artery occlusion was used to induce CI-RP after which the rats were divided into model (n=39), SGD (n=28), clopidogrel (n=25) and sham operated (n=34) groups. The Bederson scale was used to evaluate changes in behavioral indices. The levels of IL-1β, TNF-α, MCP-1, IL-10, RANTES, VEGF, and TGF-β1 in the serum and infarcted brain tissues were measured. Nissl body and immunohistochemical staining methods were used to detect biochemical changes in neurons, microglial cells, and astrocytes. Serum levels of VEGF, TNF-α, MCP-1, IL-1β, and IL-10 increased significantly 24 h after CI-RP. In brain tissue, levels of TNF-αand IL-1βsignificantly increased 24 h after CI-RP, whereas levels of TGF-β1 and MCP-1 were significantly higher 96 h after CI-RP (P<0.05). SGD or clopidogrel after CI-RP reduced TNF-αand IL-1βlevels in brain tissue and serum levels of MCP-1, IL-1β, and IL-10. SGD increased the number of NeuN-positive cells in infarcted brain tissue and reduced the number of IBA1-positive and GFAP-positive cells. The efficacy of SGD was significantly higher than that of clopidogrel.


2005 ◽  
Vol 102 (6) ◽  
pp. 1085-1093 ◽  
Author(s):  
E-Jian Lee ◽  
Ming-Yang Lee ◽  
Guan-Liang Chang ◽  
Li-Hsuan Chen ◽  
Yu-Ling Hu ◽  
...  

Object. The authors examined whether delayed treatment with Mg++ would reduce brain infarction and improve electrophysiological and neurobehavioral recovery following cerebral ischemia—reperfusion. Methods. Male Sprague—Dawley rats were subjected to right middle cerebral artery occlusion for 90 minutes followed by 72 hours of reperfusion. Magnesium sulfate (750 µmol/kg) or vehicle was given via intracarotid infusion at the beginning of reperfusion. Neurobehavioral outcome and somatosensory evoked potentials (SSEPs) were examined before and 72 hours after ischemia—reperfusion. Brain infarction was assessed after the rats had died. Before ischemia—reperfusion, stable SSEP waveforms were recorded after individual fore- and hindpaw stimulations. At 72 hours of perfusion the SSEPs recorded from ischemic fore- and hindpaw cortical fields were depressed in vehicle-injected animals and the amplitudes decreased to 19 and 27% of baseline, respectively (p < 0.001). Relative to controls, the amplitudes of SSEPs recorded from both ischemic fore- and hindpaw cortical field in the Mg++-treated animals were significantly improved by 23% (p < 0.005) and 39% (p < 0.001) of baselines, respectively. In addition, Mg++ improved sensory and motor neurobehavioral outcomes by 34% (p < 0.01) and 24% (p < 0.05), respectively, and reduced cortical (p < 0.05) and striatal (p < 0.05) infarct sizes by 42 and 36%, respectively. Conclusions. Administration of Mg++ at the commencement of reperfusion enhances electrophysiological and neurobehavioral recovery and reduces brain infarction after cerebral ischemia—reperfusion. Because Mg++ has already been used clinically, it may be worthwhile to investigate it further to see if it holds potential benefits for patients with ischemic stroke and for those who will undergo carotid endarterectomy.


2021 ◽  
Vol 15 ◽  
Author(s):  
Dazhuang Yi ◽  
Qunhui Wang ◽  
Yuhao Zhao ◽  
Yu Song ◽  
Hong You ◽  
...  

AimThis study was conducted in order to reveal the alterations in the N6-methyladenosine (m6A) modification profile of cerebral ischemia–reperfusion injury model rats.Materials and MethodsRats were used to establish the middle cerebral artery occlusion and reperfusion (MCAO/R) model. MeRIP-seq and RNA-seq were performed to identify differences in m6A methylation and gene expression. The expression of m6A methylation regulators was analyzed in three datasets and detected by quantitative real-time polymerase chain reaction, western blot, and immunofluorescence.ResultsWe identified 1,160 differentially expressed genes with hypermethylated or hypomethylated m6A modifications. The differentially expressed genes with hypermethylated m6A modifications were involved in the pathways associated with inflammation, while hypomethylated differentially expressed genes were related to neurons and nerve synapses. Among the m6A regulators, FTO was specifically localized in neurons and significantly downregulated after MCAO/R.ConclusionOur study provided an m6A transcriptome-wide map of the MACO/R rat samples, which might provide new insights into the mechanisms of cerebral ischemia–reperfusion injury.


2003 ◽  
Vol 61 (3B) ◽  
pp. 751-756 ◽  
Author(s):  
Sinésio Grace Duarte ◽  
Antônio Dorival Campos ◽  
Benedicto Oscar Colli

OBJECTIVE: Despite cerebral ischemia being a frequent clinical pathologic state, the tolerance of neural tissue to oxygen absence and to reperfusion is controversial. This study aims to evaluate the effects of focal cerebral ischemia/reperfusion, by analyzing the mitochondrial respiration. METHOD: Sixty-four adult rats underwent focal cerebral ischemia by middle cerebral artery occlusion, during 15, 30 and 60 minutes, followed by 10 minutes or 19 hours of reperfusion. The effects of ischemia were analyzed measuring the O2 consumption by mitochondria in the ischemic and non-ischemic areas. RESULTS: There was compromise of the mitochondrial respiration after 30 and 60 minutes of ischemia, followed by 10 minutes of reperfusion but there was no alteration in this function after 19 hours of reperfusion. CONCLUSION: Compromise of the mitochondrial function occurred after 30 minutes of ischemia but, until one hour of ischemia, if the reperfusion was prolonged there was no evidence of ischemic/reperfusion injuries.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Wen-yi Qin ◽  
Yong Luo ◽  
Ling Chen ◽  
Tao Tao ◽  
Yang Li ◽  
...  

The activated nuclear factor-KappaB signaling pathway plays a critical role in inducing inflammatory injury. It has been reported that electroacupuncture could be an effective anti-inflammatory treatment. We aimed to explore the complex mechanism by which EA inhibits the activation of the NF-κB signal pathway and ameliorate inflammatory injury in the short term; the effects of NEMO Binding Domain peptide for this purpose were compared. Focal cerebral I/R was induced by middle cerebral artery occlusion for 2 hrs. Total 380 male Sprague-Dawley rats are in the study. The neurobehavioral scores, infarction volumes, and the levels of IL-1βand IL-13 were detected. NF-κB p65, IκBα, IKKα, and IKKβwere analyzed and the ability of NF-κB binding DNA was investigated. The EA treatment and the NBD peptide treatment both reduced infarct size, improved neurological scores, and regulated the levels of IL-1βand IL-13. The treatment reduced the expression of IKKαand IKKβand altered the expression of NF-κB p65 and IκBαin the cytoplasm and nucleus; the activity of NF-κB was effectively reduced. We conclude that EA treatment might interfere with the process of NF-κB nuclear translocation. And it also could suppress the activity of NF-κB signaling pathway to ameliorate the inflammatory injury after focal cerebral ischemia/reperfusion.


Sign in / Sign up

Export Citation Format

Share Document