The effect of unreamed, limited reamed and standard reamed intramedullary nailing on cortical bone porosity and new bone formation

1999 ◽  
Vol 13 (4) ◽  
pp. 304
Author(s):  
T Hupel ◽  
S Aksenov ◽  
E H Schemitsch
Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1458
Author(s):  
Kazuaki Morizane ◽  
Koji Goto ◽  
Toshiyuki Kawai ◽  
Shunsuke Fujibayashi ◽  
Bungo Otsuki ◽  
...  

Composites of unsintered hydroxyapatite (HA) and poly(L-lactide) (PLLA) reinforced by compression forging are biodegradable, bioactive, and have ultrahigh strength. However, foreign body reactions to PLLA and physical irritation can occur when not covered by bone. We aimed to confirm the relationships between the depth of the implanted HA-PLLA threaded pins and the new bone formation. We inserted HA-PLLA composite threaded pins (diameter: 2.0 or 4.5 mm) into the femoral and tibial bones of 32 mature male Japanese white rabbits (weight 3.0–3.5 kg) with the pin head 1 or 0 mm below or protruding 1 or 2 mm above surrounding cortical bone. Eight euthanized rabbits were radiologically and histologically assessed at various intervals after implantation. Bone bridging was complete over pins of both diameters at ~12 weeks, when inserted 1 mm below the surface, but the coverage of the pins inserted at 0 mm varied. Bone was not formed when the pins protruded >1 mm from the bone surface. No inflammation developed around the pins by 25 weeks. However, foreign body reactions might develop if composites are fixed above the bone surface, and intraosseous fixation would be desirable using double-threaded screws or a countersink to avoid screw head protrusion.


2008 ◽  
Vol 396-398 ◽  
pp. 11-14 ◽  
Author(s):  
Masashi Iwasashi ◽  
Masataka Sakane ◽  
Yasushi Suetsugu ◽  
Naoyuki Ochiai

Unidirectional porous hydroxyapatite (UDPHAp) was developed which has microstructure in that cross sectionally oval pores 100 ~ 300µm in diameter penetrate through the material, and that is suitable for osteogenesis and angiogenesis.The porosity of the UDPHAp was 75 % and the compression strength was 14 MPa. A cortical bone defect was made at proximal tibia of Japanese white rabbit, and a trapezoidal prisms shaped UDPHAp was implanted. By histlogical evaluation, 2 weeks after implantation, new bone and new capillary was observed inside UDPHAp. Twelve weeks after implantation, new bone formation was observed in 41.6 % of the porous area. The results of this study suggest a great possibility of utilizing it in actual clinical setting as a bone substitution.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 381
Author(s):  
Hyunmin Choi ◽  
Kyu-Hyung Park ◽  
Narae Jung ◽  
June-Sung Shim ◽  
Hong-Seok Moon ◽  
...  

The aim of this study was to investigate the behavior of dental-derived human mesenchymal stem cells (d-hMSCs) in response to differently surface-treated implants and to evaluate the effect of d-hMSCs on local osteogenesis around an implant in vivo. d-hMSCs derived from alveolar bone were established and cultured on machined, sandblasted and acid-etched (SLA)-treated titanium discs with and without osteogenic induction medium. Their morphological and osteogenic potential was assessed by scanning electron microscopy (SEM) and real-time polymerase chain reaction (RT-PCR) via mixing of 5 × 106 of d-hMSCs with 1 mL of Metrigel and 20 μL of gel-cell mixture, which was dispensed into the defect followed by the placement of customized mini-implants (machined, SLA-treated implants) in New Zealand white rabbits. Following healing periods of 2 weeks and 12 weeks, the obtained samples in each group were analyzed radiographically, histomorphometrically and immunohistochemically. The quantitative change in osteogenic differentiation of d-hMSCs was identified according to the type of surface treatment. Radiographic analysis revealed that an increase in new bone formation was statistically significant in the d-hMSCs group. Histomorphometric analysis was in accordance with radiographic analysis, showing the significantly increased new bone formation in the d-hMSCs group regardless of time of sacrifice. Human nuclei A was identified near the area where d-hMSCs were implanted but the level of expression was found to be decreased as time passed. Within the limitations of the present study, in this animal model, the transplantation of d-hMSCs enhanced the new bone formation around an implant and the survival and function of the stem cells was experimentally proven up to 12 weeks post-sacrifice.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Hideki Ueyama ◽  
Yoichi Ohta ◽  
Yuuki Imai ◽  
Akinobu Suzuki ◽  
Ryo Sugama ◽  
...  

Abstract Background Bone morphogenetic proteins (BMPs) induce osteogenesis in various environments. However, when BMPs are used alone in the bone marrow environment, the maintenance of new bone formation is difficult owing to vigorous bone resorption. This is because BMPs stimulate the differentiation of not only osteoblast precursor cells but also osteoclast precursor cells. The present study aimed to induce and maintain new bone formation using the topical co-administration of recombinant human BMP-2 (rh-BMP-2) and zoledronate (ZOL) on beta-tricalcium phosphate (β-TCP) composite. Methods β-TCP columns were impregnated with both rh-BMP-2 (30 µg) and ZOL (5 µg), rh-BMP-2 alone, or ZOL alone, and implanted into the left femur canal of New Zealand white rabbits (n = 56). The implanted β-TCP columns were harvested and evaluated at 3 and 6 weeks after implantation. These harvested β-TCP columns were evaluated radiologically using plane radiograph, and histologically using haematoxylin/eosin (H&E) and Masson’s trichrome (MT) staining. In addition, micro-computed tomography (CT) was performed for qualitative analysis of bone formation in each group (n = 7). Results Tissue sections stained with H&E and MT dyes revealed that new bone formation inside the β-TCP composite was significantly greater in those impregnated with both rh-BMP-2 and ZOL than in those from the other experimental groups at 3 and 6 weeks after implantations (p < 0.05). Micro-CT data also demonstrated that the bone volume and the bone mineral density inside the β-TCP columns were significantly greater in those impregnated with both rh-BMP-2 and ZOL than in those from the other experimental groups at 3 and 6 weeks after implantations (p < 0.05). Conclusions The topical co-administration of both rh-BMP-2 and ZOL on β-TCP composite promoted and maintained newly formed bone structure in the bone marrow environment.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 952
Author(s):  
Fabien Bornert ◽  
François Clauss ◽  
Guoqiang Hua ◽  
Ysia Idoux-Gillet ◽  
Laetitia Keller ◽  
...  

One major limitation for the vascularization of bone substitutes used for filling is the presence of mineral blocks. The newly-formed blood vessels are stopped or have to circumvent the mineral blocks, resulting in inefficient delivery of oxygen and nutrients to the implant. This leads to necrosis within the implant and to poor engraftment of the bone substitute. The aim of the present study is to provide a bone substitute currently used in the clinic with suitably guided vascularization properties. This therapeutic hybrid bone filling, containing a mineral and a polymeric component, is fortified with pro-angiogenic smart nano-therapeutics that allow the release of angiogenic molecules. Our data showed that the improved vasculature within the implant promoted new bone formation and that the newly-formed bone swapped the mineral blocks of the bone substitutes much more efficiently than in non-functionalized bone substitutes. Therefore, we demonstrated that our therapeutic bone substitute is an advanced therapeutical medicinal product, with great potential to recuperate and guide vascularization that is stopped by mineral blocks, and can improve the regeneration of critical-sized bone defects. We have also elucidated the mechanism to understand how the newly-formed vessels can no longer encounter mineral blocks and pursue their course of vasculature, giving our advanced therapeutical bone filling great potential to be used in many applications, by combining filling and nano-regenerative medicine that currently fall short because of problems related to the lack of oxygen and nutrients.


Sign in / Sign up

Export Citation Format

Share Document