Influence of Adipose-Derived Mesenchymal Stromal Cell Demineralized Bone Composite on New Bone Formation in Critical Sized Cortical Bone Defects

Author(s):  
Nicole P Ehrhart ◽  
Laura Chubb ◽  
Elissa Flaumenhaft ◽  
Carolyn Barret ◽  
Yaling Shi
Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 952
Author(s):  
Fabien Bornert ◽  
François Clauss ◽  
Guoqiang Hua ◽  
Ysia Idoux-Gillet ◽  
Laetitia Keller ◽  
...  

One major limitation for the vascularization of bone substitutes used for filling is the presence of mineral blocks. The newly-formed blood vessels are stopped or have to circumvent the mineral blocks, resulting in inefficient delivery of oxygen and nutrients to the implant. This leads to necrosis within the implant and to poor engraftment of the bone substitute. The aim of the present study is to provide a bone substitute currently used in the clinic with suitably guided vascularization properties. This therapeutic hybrid bone filling, containing a mineral and a polymeric component, is fortified with pro-angiogenic smart nano-therapeutics that allow the release of angiogenic molecules. Our data showed that the improved vasculature within the implant promoted new bone formation and that the newly-formed bone swapped the mineral blocks of the bone substitutes much more efficiently than in non-functionalized bone substitutes. Therefore, we demonstrated that our therapeutic bone substitute is an advanced therapeutical medicinal product, with great potential to recuperate and guide vascularization that is stopped by mineral blocks, and can improve the regeneration of critical-sized bone defects. We have also elucidated the mechanism to understand how the newly-formed vessels can no longer encounter mineral blocks and pursue their course of vasculature, giving our advanced therapeutical bone filling great potential to be used in many applications, by combining filling and nano-regenerative medicine that currently fall short because of problems related to the lack of oxygen and nutrients.


2010 ◽  
Vol 11 (2) ◽  
pp. 161-171 ◽  
Author(s):  
Jun Guo ◽  
Minlin Liu ◽  
Dehong Yang ◽  
Mary L. Bouxsein ◽  
Hiroaki Saito ◽  
...  

MRS Bulletin ◽  
1996 ◽  
Vol 21 (11) ◽  
pp. 36-39 ◽  
Author(s):  
Ugo Ripamonti ◽  
Nicolaas Duneas

Recent advances in materials science and biotechnology have given birth to the new and exciting field of tissue engineering, in which the two normally disparate fields are merging into a profitable matrimony. In particular the use of biomaterials capable of initiating new bone formation via a process called osteoinduction is leading to quantum leaps for the tissue engineering of bone.The classic work of Marshall R. Urist and A. Hari Reddi opened the field of osteoinductive biomaterials. Urist discovered that, upon implantation of devitalized, demineralized bone matrix in the muscle of experimental animals, new bone formation occurs within two weeks, a phenomenon he described as bone formation by induction. The tissue response elicited by implantation of demineralized bone matrix in muscle or under the skin includes activation and migration of undifferentiated mesenchymal cells by chemotaxis, anchoragedependent cell attachment to the matrix, mitosis and proliferation of mesenchymal cells, differentiation of cartilage, mineralization of the cartilage, vascular invasion of the cartilage, differentiation of osteoblasts and deposition of bone matrix, and finally mineralization of bone and differentiation of marrow in the newly developed ossicle.The osteoinductive ability of the extracellular matrix of bone is abolished by the dissociative extraction of the demineralized matrix, but is recovered when the extracted component, itself inactive, is reconstituted with the inactive residue—mainly insoluble collagenous bone matrix. This important experiment showed that the osteoinductive signal resides in the solubilized component but needs to be reconstituted with an appropriate carrier to restore the osteoinductive activity. In this case, the carrier is the insoluble collagenous bone matrix—mainly crosslinked type I collagen.


2006 ◽  
Vol 24 (7) ◽  
pp. 1454-1462 ◽  
Author(s):  
Yanchun Liu ◽  
Shama Ahmad ◽  
Xiao Zheng Shu ◽  
R. Kent Sanders ◽  
Sally Anne Kopesec ◽  
...  

2005 ◽  
Vol 284-286 ◽  
pp. 811-814 ◽  
Author(s):  
Toshiki Itoh ◽  
Seiji Ban ◽  
T. Watanabe ◽  
Shozo Tsuruta ◽  
Takahiro Kawai ◽  
...  

It is well known that bone morphogenetic protein (BMP) induces bone formation and requires for carriers. Poly-lactic acid / poly-glycolic acid (PLGA) is frequently used as the carriers of BMP. We developed a biodegradable composite PLGA membrane, which was containing oriented needle-like apatite with BMP. The composite membranes were implanted into the thigh muscle pouch of 3-week-old-mice. At 3 weeks after implantation, the implanted area was observed by optical microscopy. The composite membrane containing oriented needle-like apatite with BMP induced new bone formation. It seems that this composite membrane might be a scaffold of BMP and promoting the healing of bone defects.


2020 ◽  
Vol 8 (1) ◽  
pp. 7 ◽  
Author(s):  
Savvas Titsinides ◽  
Theodore Karatzas ◽  
Despoina Perrea ◽  
Efstathios Eleftheriadis ◽  
Leonidas Podaropoulos ◽  
...  

Regeneration of large jaw bone defects still remains a clinical challenge. To avoid incomplete bone repair, bone grafts have been advocated to support the healing process. This study comparatively evaluated new bone formation among a synthetic graft substitute, a human bone derivative, and a bovine xenograft. Materials were placed in 3 out of the 4 bone cavities, while 1 deficit was left empty, serving as a control, in mono-cortical defects, surgically prepared in the porcine calvaria bone. Animals were randomized in 2 groups and euthanized at 8 and 12 weeks. Harvested tissue specimens were qualitatively evaluated by histology. New bone formation was quantitatively measured by histomorphometry. Maximum new bone formation was noticed in defects grafted with beta-tricalcium phosphate b-TCP compared to the other bone substitutes, at 8 and 12 weeks post-surgery. Bovine and human allograft induced less new bone formation compared to empty bone cavity. Histologic analysis revealed that b-TCP was absorbed and substituted significantly, while bovine and human allograft was maintained almost intact in close proximity with new bone. Based on our findings, higher new bone formation was detected in defects filled with b-TCP when compared to bovine and human graft substitutes.


1988 ◽  
Vol 69 (2) ◽  
pp. 269-275 ◽  
Author(s):  
Charles E. Rawlings ◽  
Robert H. Wilkins ◽  
Jacob S. Hanker ◽  
Nicholas G. Georgiade ◽  
John M. Harrelson

✓ The materials ordinarily used to reconstruct bone defects in the calvaria and facial bones either are difficult to shape, are partially resorbed by the body, or are likely to become infected if used near a contaminated area such as the frontal sinus. Calcium sulfate hemihydrate (plaster of Paris) has been known for years to have excellent reparative qualities in bone defects, but ordinarily it is quickly resorbed. Consequently, a new material, a composite of a dense form of plaster of Paris and hydroxylapatite, was devised to provide nonabsorbable hydroxylapatite particles for bone to form around and within during the phase of plaster absorption. Two types of this material were evaluated in cranial defects in cats. Each of the plaster of Paris/hydroxylapatite mixtures was placed into a surgically unroofed frontal sinus and into a contralateral parietal trephine hole in a group of 32 cats. Two cats in each group succumbed to anesthesia, leaving two sets of 30 cats. During the entire follow-up period there was only one other death, with no evidence of wound infection, wound dehiscence, implant rejection, or cerebral dysfunction among the survivors. The cats in each group were sacrificed at 1, 2, 3, 5, 7, 8, 9, 10, or 12 months after operation. Following sacrifice, both the frontal and parietal defects were exposed and examined visually, histologically, and with histomorphometric analysis for new bone formation. New bone formation was present as early as 1 month after operation and continued to increase during the 12 months of the study. Based upon these osteogenic qualities, the ease of shaping the composite, and the lack of infection in the frontal sinus region, it is concluded that this substance could be a valuable new material for human cranioplasty.


Sign in / Sign up

Export Citation Format

Share Document