The Relationship of Proximal Locking Screws to the Axillary Nerve During Antegrade Humeral Nail Insertion of Four Commercially Available Implants

2004 ◽  
Vol 18 (9) ◽  
pp. 585-588 ◽  
Author(s):  
Edward J. Prince ◽  
Kristoffer M. Breien ◽  
Edward V. Fehringer ◽  
Matthew A. Mormino
2019 ◽  
Vol 12 (1) ◽  
pp. 24-30
Author(s):  
Stephen Gates ◽  
Brian Sager ◽  
Garen Collett ◽  
Avneesh Chhabra ◽  
Michael Khazzam

Background The purpose of this study was to define the relationship of the axillary and radial nerves, particularly how these are affected with changing arm position. Methods Twenty cadaveric shoulders were dissected, identifying the axillary and radial nerves. Distances between the latissimus dorsi tendon and these nerves were recorded in different shoulder positions. Positions included adduction/neutral rotation, abduction/neutral rotation for the axillary nerve, adduction/internal rotation, adduction/neutral rotation, adduction/external rotation, and abduction/external rotation for the radial nerve. Results Width of the latissimus tendon at its humeral insertion was 29.3 ± 5.7 mm. Mean distance from the latissimus insertion to the axillary nerve in adduction/neutral rotation was 24.2 ± 7.1 mm, the distance increased to 41.1 ± 9.8 mm in abduction/neutral rotation. Mean distance from the latissimus insertion to the radial nerve was 15.3 ± 5.5 mm with adduction/internal rotation, 25.8 ± 6.9 mm in adduction/neutral rotation, and 39.5 ± 6.8 mm in adduction/external rotation. Mean distance increased with abduction/external rotated 51.1 ± 7.4 mm. Conclusions Knowing the axillary and radial nerve locations relative to the latissimus dorsi tendon decreases the risk of iatrogenic nerve injury. Understanding the dynamic nature of these nerves related to different shoulder positions is critical to avoid complications.


1998 ◽  
Vol 26 (4) ◽  
pp. 505-509 ◽  
Author(s):  
Colin L. Eakin ◽  
Paul Dvirnak ◽  
Chris M. Miller ◽  
Richard J. Hawkins

Ten cadaveric shoulders (mean donor age, 60.5 years) underwent arthroscopic placement of capsulolabral sutures as performed during arthroscopic reconstruction for shoulder instability. In relation to the glenoid face, the sutures were placed anterior, anteroinferior, inferior, posteroinferior, and posterior. All sutures entered the capsule approximately 1 cm away from the glenoid and exited beneath the labrum, and were tied using arthroscopic knot-tying techniques. The shoulders were frozen in the lateral arthroscopic position of approximately 45° of abduction and 20° of flexion and sectioned in the plane of the glenohumeral joint. The axillary nerve was then dissected, and the average distance from the nerve to each suture was found to be 16.7 mm at the anterior position, 12.5 mm at the anteroinferior position, 14.4 mm at the inferior position, 24.1 mm at the posteroinferior position, and 32.3 mm at the posterior position. In no specimen was any suture closer to the axillary nerve than 7 mm. We noted a statistically significant trend for the nerve to lie closest to the anteroinferior suture and gradually recede from the remaining sutures lying more posteriorly. This anatomic study is the first to demonstrate a relatively safe margin for arthroscopic suture placement between the capsule and axillary nerve when these sutures are placed approximately 1 cm from the glenoid rim.


2004 ◽  
Vol 86 (10) ◽  
pp. 2135-2142 ◽  
Author(s):  
Matthew R. Price ◽  
Edward D. Tillett ◽  
Robert D. Acland ◽  
G. Stephen Nettleton

Paleobiology ◽  
1980 ◽  
Vol 6 (02) ◽  
pp. 146-160 ◽  
Author(s):  
William A. Oliver

The Mesozoic-Cenozoic coral Order Scleractinia has been suggested to have originated or evolved (1) by direct descent from the Paleozoic Order Rugosa or (2) by the development of a skeleton in members of one of the anemone groups that probably have existed throughout Phanerozoic time. In spite of much work on the subject, advocates of the direct descent hypothesis have failed to find convincing evidence of this relationship. Critical points are:(1) Rugosan septal insertion is serial; Scleractinian insertion is cyclic; no intermediate stages have been demonstrated. Apparent intermediates are Scleractinia having bilateral cyclic insertion or teratological Rugosa.(2) There is convincing evidence that the skeletons of many Rugosa were calcitic and none are known to be or to have been aragonitic. In contrast, the skeletons of all living Scleractinia are aragonitic and there is evidence that fossil Scleractinia were aragonitic also. The mineralogic difference is almost certainly due to intrinsic biologic factors.(3) No early Triassic corals of either group are known. This fact is not compelling (by itself) but is important in connection with points 1 and 2, because, given direct descent, both changes took place during this only stage in the history of the two groups in which there are no known corals.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Author(s):  
Leon Dmochowski

Electron microscopy has proved to be an invaluable discipline in studies on the relationship of viruses to the origin of leukemia, sarcoma, and other types of tumors in animals and man. The successful cell-free transmission of leukemia and sarcoma in mice, rats, hamsters, and cats, interpreted as due to a virus or viruses, was proved to be due to a virus on the basis of electron microscope studies. These studies demonstrated that all the types of neoplasia in animals of the species examined are produced by a virus of certain characteristic morphological properties similar, if not identical, in the mode of development in all types of neoplasia in animals, as shown in Fig. 1.


Author(s):  
J.R. Pfeiffer ◽  
J.C. Seagrave ◽  
C. Wofsy ◽  
J.M. Oliver

In RBL-2H3 rat leukemic mast cells, crosslinking IgE-receptor complexes with anti-IgE antibody leads to degranulation. Receptor crosslinking also stimulates the redistribution of receptors on the cell surface, a process that can be observed by labeling the anti-IgE with 15 nm protein A-gold particles as described in Stump et al. (1989), followed by back-scattered electron imaging (BEI) in the scanning electron microscope. We report that anti-IgE binding stimulates the redistribution of IgE-receptor complexes at 37“C from a dispersed topography (singlets and doublets; S/D) to distributions dominated sequentially by short chains, small clusters and large aggregates of crosslinked receptors. These patterns can be observed (Figure 1), quantified (Figure 2) and analyzed statistically. Cells incubated with 1 μg/ml anti-IgE, a concentration that stimulates maximum net secretion, redistribute receptors as far as chains and small clusters during a 15 min incubation period. At 3 and 10 μg/ml anti-IgE, net secretion is reduced and the majority of receptors redistribute rapidly into clusters and large aggregates.


Sign in / Sign up

Export Citation Format

Share Document