locking screws
Recently Published Documents


TOTAL DOCUMENTS

166
(FIVE YEARS 34)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hyo-Jin Lee ◽  
Young Uk Park ◽  
Sung Jae Kim ◽  
Hyong Nyun Kim

AbstractThere have been several reports about the difficulties in removing 3.5-mm titanium locking screws from plates due to the stripping or rounding of the hexagonal screw socket. We investigated whether stripping the locking screw sockets can be prevented by using different screwdrivers or interposing materials into the socket during removal. We overtightened 120 3.5-mm titanium locking screws (Depuy Synthes, Paoli, PA) equally into locking plates on sawbone tibia models, applying a uniform torque of 4.5 Nm, exceeding the recommended torque of 1.5 Nm. Twenty screws each were removed using a straight-handle 2.5-mm screwdriver, T-handle screwdriver, hex key wrench, and straight-handle screwdriver with a non-dominant hand. In addition, 20 screws were removed using foil from a suture packet inserted into the screw socket or using parts of a latex glove inserted into the screw socket. The incidence rates of screw stripping using the straight-handle screwdriver, T-handle screwdriver, hex key wrench, non-dominant hand, foil interposition, and latex glove interposition were 75%, 40%, 35%, 90%, 60%, and 70%, respectively. When a T-handle screwdriver or hex key wrench was used, the probability of screw stripping was 4.50 times (odds ratio = 4.50, 95% confidence interval = 1.17 to 17.37, p = 0.03) and 5.57 times (odds ratio = 5.57, 95% confidence interval = 1.42 to 21.56, p = 0.01) lower than that with the straight-handle screwdriver, respectively. Foil or latex glove interpositions did not prevent screw stripping. Thus, in the current experimental study, T-handle screwdriver or hex key wrench usage decreased the incidence rate of screw stripping during removal compared to straight-handle screwdriver use.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shingo Abe ◽  
Kota Koizumi ◽  
Tsuyoshi Murase ◽  
Kohji Kuriyama

Abstract Background The locking plate is a useful treatment for lateral clavicle fractures, however, there are limits to the fragment size that can be fixed. The current study aimed to measure the screw angles of three locking plates for lateral clavicle fractures. In addition, to assess the number of screws that can be inserted in different fragment sizes, to elucidate the size limits for locking plate fixation. Methods The following three locking plates were analyzed: the distal clavicle plate [Acumed, LLC, Oregon, the USA], the LCP clavicle plate lateral extension [Depuy Synthes, LLC, PA, the USA], and the HAI clavicle plate [HOMS Engineering, Inc., Nagano, Japan]. We measured the angles between the most medial and lateral locking screws in the coronal plane and between the most anterior and posterior locking screws in the sagittal plane. A computer simulation was used to position the plates as laterally as possible in ten normal three-dimensional clavicle models. Lateral fragment sizes of 10, 15, 20, 25, and 30 mm were simulated in the acromioclavicular joint, and the number of screws that could be inserted in the lateral fragment was assessed. Subsequently, the area covered by the locking screws on the inferior surface of the clavicle was measured. Results The distal clavicle plate had relatively large screw angles (20° in the coronal plane and 32° in the sagittal plane). The LCP clavicle lateral extension had a large angle (38°) in the sagittal plane. However, the maximum angle of the HAI clavicle plate was 13° in either plane. The distal clavicle plate allowed most screws to be inserted in each size of bone fragment. For all locking plates, all screws could be inserted in 25 mm fragments. The screws of distal clavicle plate covered the largest area on the inferior surface of the clavicle. Conclusions Screw angles and the numbers of screws that could be inserted in the lateral fragment differed among products. Other augmented fixation procedures should be considered for fractures with fragment sizes < 25 mm that cannot be fixed with a sufficient number of screws.


Injury ◽  
2021 ◽  
Author(s):  
N. Nizaj ◽  
C. Muhammed Shamseer ◽  
A.N. Sukesh ◽  
Jacob Varughese ◽  
Bipin Theruvil

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253862
Author(s):  
Dae-Kyung Kwak ◽  
Sun-Hee Bang ◽  
Won-Hyeon Kim ◽  
Sung-Jae Lee ◽  
Seunghun Lee ◽  
...  

A finite element analysis was performed to evaluate the stresses around nails and cortical bones in subtrochanteric (ST) fracture models fixed using short cephalomedullary nails (CMNs). A total 96 finite element models (FEMs) were simulated on a transverse ST fracture at eight levels with three different fracture gaps and two different distal locking screw configurations in both normal and osteoporotic bone. All FEMs were fixed using CMNs 200 mm in length. Two distal locking screws showed a wider safe range than 1 distal screw in both normal and osteoporotic bone at fracture gaps ≤ 3 mm. In normal bone FEMs fixed even with two distal locking screws, peak von Mises stresses (PVMSs) in cortical bone and nail constructs reached or exceeded 90% of the yield strength at fracture levels 50 mm and 0 and 50 mm, respectively, at all fracture gaps. In osteoporotic bone FEMs, PVMSs in cortical bone and nail constructs reached or exceeded 90% of the yield strength at fracture levels 50 mm and 0 and 50 mm, respectively, at a 1-mm fracture gap. However, at fracture gaps ≥ 2 mm, PVMSs in cortical bone reached or exceeded 90% of the yield strength at fracture levels ≥ 35 mm. PVMSs in nail showed the same results as 1-mm fracture gaps. PVMSs increased and safe range reduced, as the fracture gap increased. Short CMNs (200 mm in length) with two distal screws may be considered suitable for the fixation of ST transverse fractures at fracture levels 10 to 40 mm below the lesser trochanter in normal bone and 10 to 30 mm in osteoporotic bone, respectively, under the assumptions of anatomical reduction at fracture gap ≤ 3 mm. However, the fracture gap should be shortened to the minimum to reduce the risk of refracture and fixation failure, especially in osteoporotic fractures.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Michael J. Weaver ◽  
George W. Chaus ◽  
Aidin Masoudi ◽  
Kaveh Momenzadeh ◽  
Amin Mohamadi ◽  
...  

Abstract Background Nonunion following treatment of supracondylar femur fractures with lateral locked plates (LLP) has been reported to be as high as 21 %. Implant related and surgeon-controlled variables have been postulated to contribute to nonunion by modulating fracture-fixation construct stiffness. The purpose of this study is to evaluate the effect of surgeon-controlled factors on stiffness when treating supracondylar femur fractures with LLPs: Does plate length affect construct stiffness given the same plate material, fracture working length and type of screws? Does screw type (bicortical locking versus bicortical nonlocking or unicortical locking) and number of screws affect construct stiffness given the same material, fracture working length, and plate length? Does fracture working length affect construct stiffness given the same plate material, length and type of screws? Does plate material (titanium versus stainless steel) affect construct stiffness given the same fracture working length, plate length, type and number of screws? Methods Mechanical study of simulated supracondylar femur fractures treated with LLPs of varying lengths, screw types, fractureworking lenghts, and plate/screw material. Overall construct stiffness was evaluated using an Instron hydraulic testing apparatus. Results Stiffness was 15 % higher comparing 13-hole to the 5-hole plates (995 N/mm849N vs. /mm, p = 0.003). The use of bicortical nonlocking screws decreased overall construct stiffness by 18 % compared to bicortical locking screws (808 N/mm vs. 995 N/mm, p = 0.0001). The type of screw (unicortical locking vs. bicortical locking) and the number of screws in the diaphysis (3 vs. 10) did not appear to significantly influence construct stiffness (p = 0.76, p = 0.24). Similarly, fracture working length (5.4 cm vs. 9.4 cm, p = 0.24), and implant type (titanium vs. stainless steel, p = 0.12) did also not appear to effect stiffness. Discussion Using shorter plates and using bicortical nonlocking screws (vs. bicortical locking screws) reduced overall construct stiffness. Using more screws, using unicortical locking screws, increasing fracture working length and varying plate material (titanium vs. stainless steel) does not appear to significantly alter construct stiffness. Surgeons can adjust plate length and screw types to affect overall fracture-fixation construct stiffness; however, the optimal stiffness to promote healing remains unknown.


Author(s):  
A. Raviraj ◽  
K. Abhishek Sugumar ◽  
Vidyasagar Maalepati ◽  
H. A. Shivareddy ◽  
Ashish Anand

A segmentally broken (three part) interlocking femoral nail with broken interlocking screw can be challenging to remove. We describe a novel technique for extraction of an unusual two level broken cannulated anterograde femoral nail to treat the delayed union with exchange nailing.  This is the first reported case of a three-part broken intramedullary interlocking nail with broken distal locking screws, where the broken hardware was removed without opening the facture site or the knee. This technique is simple and does not require specialized equipment. The surgical technique and review of literature is presented.


2021 ◽  
Vol 8 ◽  
Author(s):  
Remigiusz M. Grzeskowiak ◽  
Rebecca E. Rifkin ◽  
Elizabeth G. Croy ◽  
Richard C. Steiner ◽  
Reza Seddighi ◽  
...  

The objective of this study was to evaluate changes in peak reverse torque (PRT) of the locking head screws that occur over time. A locking plate construct, consisting of an 8-hole locking plate and 8 locking screws, was used to stabilize a tibia segmental bone defect in a goat model. PRT was measured after periods of 3, 6, 9, and 12 months of ambulation. PRT for each screw was determined during plate removal. Statistical analysis revealed that after 6 months of loading, locking screws placed in position no. 4 had significantly less PRT as compared with screws placed in position no. 5 (p &lt; 0.05). There were no statistically significant differences in PRT between groups as a factor of time (p &gt; 0.05). Intracortical fractures occurred during the placement of 151 out of 664 screws (22.7%) and were significantly more common in the screw positions closest to the osteotomy (positions 4 and 5, p &lt; 0.05). Periosteal and endosteal bone reactions and locking screw backout occurred significantly more often in the proximal bone segments (p &lt; 0.05). Screw backout significantly, negatively influenced the PRT of the screws placed in positions no. 3, 4, and 5 (p &lt; 0.05). The locking plate-screw constructs provided stable fixation of 2.5-cm segmental tibia defects in a goat animal model for up to 12 months.


2021 ◽  
Vol 5 (2) ◽  
pp. 12-15
Author(s):  
Dr. Eknath D Pawar ◽  
Dr. Akshay KS ◽  
Dr. Nadir Z Shah ◽  
Dr. Amit Kumar Yadav ◽  
Dr. Sagar Bansal ◽  
...  

VCOT Open ◽  
2021 ◽  
Vol 04 (01) ◽  
pp. e24-e31
Author(s):  
Luca Vezzoni ◽  
Paolo Abrescia ◽  
Aldo Vezzoni

AbstractIn this case report, we describe an alternative surgical procedure to treat proximal radius and ulnar nonunion in a toy breed dog. A 14-month-old, Maltese cross-breed dog was referred after previous treatment with external and internal fixation had failed, resulting in a nonunion of a fracture of the proximal radius and ulna with the proximal radius fragment too small and friable to be used for fixation. A craniomedial approach was made to debride the radius nonunion site and a second approach to the lateral aspect of the ulna was made. The fracture was realigned and a titanium locking plate was applied in bridging fashion, fixed to the proximal ulnar fragment with three locking screws in the most proximal plate holes, a fourth screw was inserted in the mid-shaft of the distal ulnar fragment and three locking screws were inserted in the distal most holes of the plate through the distal ulna to engage the distal radial fragment. A recombinant bone morphogenetic protein 2 graft was inserted into the radius and ulna fracture sites. The dog had a successful clinical and radiographic outcome with bridging of the defect 4 weeks postoperatively and complete callus formation 8 weeks postoperatively. Implants have undergone dynamization and then removal. Use of a locking plate as an internal fixator achieving fixation of the proximal ulna and distal radius can be considered an option for the treatment of proximal radioulnar nonunions with a small proximal radial fragment.


Sign in / Sign up

Export Citation Format

Share Document