Green Fluorescent Protein-Adenoviral Construct As a Model for Transient Gene Therapy for Human Cultured Keratinocytes in an Athymic Mouse Model

2003 ◽  
Vol 54 (1) ◽  
pp. 72-80 ◽  
Author(s):  
Chris Campbell ◽  
Scott Hultman ◽  
Bruce Cairns ◽  
Suzan deSerres ◽  
Anthony Meyer
Blood ◽  
1998 ◽  
Vol 91 (2) ◽  
pp. 431-440 ◽  
Author(s):  
Bruno Verhasselt ◽  
Magda De Smedt ◽  
Rita Verhelst ◽  
Evelien Naessens ◽  
Jean Plum

Human umbilical cord blood (UCB) hematopoietic stem cells (HSC) receive increased attention as a possible target for gene-transfer in gene therapy trials. Diseases affecting the lymphoid lineage, as adenosine deaminase (ADA) deficiency and acquired immunodeficiency syndrome (AIDS) could be cured by gene therapy. However, the T-cell progenitor potential of these HSC after gene-transfer is largely unknown and was up to now not testable in vitro. We show here that highly purified CD34++ Lineage marker-negative (CD34++Lin−) UCB cells generate T, natural killer (NK), and dendritic cells in a severe combined immunodeficient mouse fetal thymus organ culture (FTOC). CD34++Lin− and CD34++CD38−Lin− UCB cells express the retroviral encoded marker gene Green Fluorescent Protein (GFP) after in vitro transduction with MFG-GFP retroviral supernatant. Transduced cells were still capable of generating T, NK, and dendritic cells in the FTOC, all expressing high levels of GFP under control of the Moloney murine leukemia virus (MoMuLV) long terminal repeat promotor. We thus present an in vitro assay for thymic T-cell development out of transduced UCB HSC, using GFP as a marker gene.


Blood ◽  
1998 ◽  
Vol 91 (2) ◽  
pp. 431-440 ◽  
Author(s):  
Bruno Verhasselt ◽  
Magda De Smedt ◽  
Rita Verhelst ◽  
Evelien Naessens ◽  
Jean Plum

Abstract Human umbilical cord blood (UCB) hematopoietic stem cells (HSC) receive increased attention as a possible target for gene-transfer in gene therapy trials. Diseases affecting the lymphoid lineage, as adenosine deaminase (ADA) deficiency and acquired immunodeficiency syndrome (AIDS) could be cured by gene therapy. However, the T-cell progenitor potential of these HSC after gene-transfer is largely unknown and was up to now not testable in vitro. We show here that highly purified CD34++ Lineage marker-negative (CD34++Lin−) UCB cells generate T, natural killer (NK), and dendritic cells in a severe combined immunodeficient mouse fetal thymus organ culture (FTOC). CD34++Lin− and CD34++CD38−Lin− UCB cells express the retroviral encoded marker gene Green Fluorescent Protein (GFP) after in vitro transduction with MFG-GFP retroviral supernatant. Transduced cells were still capable of generating T, NK, and dendritic cells in the FTOC, all expressing high levels of GFP under control of the Moloney murine leukemia virus (MoMuLV) long terminal repeat promotor. We thus present an in vitro assay for thymic T-cell development out of transduced UCB HSC, using GFP as a marker gene.


Sign in / Sign up

Export Citation Format

Share Document