adenoviral construct
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 0)

H-INDEX

7
(FIVE YEARS 0)

2010 ◽  
Vol 17 (10) ◽  
pp. 1567-1575 ◽  
Author(s):  
Linda E. Winter ◽  
Stephen J. Barenkamp

ABSTRACT The objective of the present study was to construct and assess the immunogenicity of recombinant adenovirus vectors expressing the HMW1, HMW2, or Hia protein of nontypeable Haemophilus influenzae (NTHi). These proteins are critical adhesins and potential protective antigens expressed by NTHi. Segments of the hmw1A and hmw2A structural genes that encode the distal one-half of mature HMW1 or HMW2 were cloned into the T7 expression vector pGEMEX-2. These constructs encoded stable HMW1 or HMW2 recombinant fusion protein that expresses B-cell epitopes common to most NTHi strains. A segment of the hia gene that encodes the surface-exposed portion of mature Hia was also cloned into pGEMEX-2. The resulting T7 gene 10 translational fusions were excised from the parent plasmids and cloned into the shuttle plasmid pDC316. Cotransfection of HEK 293 cells with the pDC316 derivatives and pBHGloxΔE1,3Cre resulted in the production of viral plaques from which recombinant adenoviruses expressing fusion proteins were recovered. Chinchillas immunized intraperitoneally with a single 108-PFU dose of either the HMW2 or Hia adenoviral construct developed high anti-HMW2 or anti-Hia serum antibody titers within 4 weeks of immunization. Chinchillas immunized intranasally with a single 107- to 109-PFU dose of the Hia adenoviral construct also developed high anti-Hia serum antibody titers within 8 weeks of immunization. Recombinant adenoviruses represent a promising system to induce mucosal and systemic immunity and protection against mucosal diseases such as otitis media. Recombinant adenoviruses expressing recombinant HMW1, HMW2, or Hia protein will be important new tools in NTHi vaccine development efforts.


2005 ◽  
Vol 385 (2) ◽  
pp. 493-502 ◽  
Author(s):  
Yutong ZHAO ◽  
Peter V. USATYUK ◽  
Rhett CUMMINGS ◽  
Bahman SAATIAN ◽  
Donghong HE ◽  
...  

LPA (lysophosphatidic acid), a potent bioactive phospholipid, elicits diverse cellular responses through activation of the G-protein-coupled receptors LPA1–LPA4. LPA-mediated signalling is partially regulated by LPPs (lipid phosphate phosphatases; LPP-1, -2 and -3) that belong to the phosphatase superfamily. This study addresses the role of LPPs in regulating LPA-mediated cell signalling and IL-8 (interleukin-8) secretion in HBEpCs (human bronchial epithelial cells). Reverse transcription–PCR and Western blotting revealed the presence and expression of LPP-1–3 in HBEpCs. Exogenous [3H]oleoyl LPA was hydrolysed to [3H]-mono-oleoylglycerol. Infection of HBEpCs with an adenoviral construct of human LPP-1 for 48 h enhanced the dephosphorylation of exogenous LPA by 2–3-fold compared with vector controls. Furthermore, overexpression of LPP-1 partially attenuated LPA-induced increases in the intracellular Ca2+ concentration, phosphorylation of IκB (inhibitory κB) and translocation of NF-κB (nuclear factor-κB) to the nucleus, and almost completely prevented IL-8 secretion. Infection of cells with an adenoviral construct of the mouse LPP-1 (R217K) mutant partially attenuated LPA-induced IL-8 secretion without altering LPA-induced changes in intracellular Ca2+ concentration, phosphorylation of IκB, NF-κB activation or IL-8 gene expression. Our results identify LPP-1 as a key regulator of LPA signalling and IL-8 secretion in HBEpCs. Thus LPPs could represent potential targets in regulating leucocyte infiltration and airway inflammation.


2004 ◽  
Vol 97 (5) ◽  
pp. 1814-1822 ◽  
Author(s):  
Louis G. Chicoine ◽  
Edith Tzeng ◽  
Rebekah Bryan ◽  
Steven Saenz ◽  
Michael L. Paffett ◽  
...  

We hypothesized that adenovirus-mediated inducible nitric oxide synthase (iNOS) gene transduction of the lung would result in time-dependent iNOS overexpression and attenuate the vascular constrictor responses to a thromboxane mimetic, U-46619. Rats were treated via the trachea with surfactant alone (sham), surfactant containing an adenoviral construct with a cytomegalovirus promoter-regulated human iNOS gene (Adeno-iNOS), or an adenoviral construct without a gene insert (Adeno-Control). Adeno-iNOS-transduced rats demonstrated human iNOS mRNA and increased iNOS protein levels only in the lungs. Immunohistochemistry of lungs from Adeno-iNOS-treated animals demonstrated transgene expression in alveolar wall cells. In the lungs from Adeno-iNOS-transduced rats, the expression of iNOS protein and exhaled nitric oxide concentrations were increased on days 1–4 and 7 but returned to baseline values by day 14. The administration of the selective iNOS inhibitor l- N6-(1-iminoethyl)lysine dihydrochloride (l-NIL) decreased exhaled nitric oxide concentrations to levels found in Adeno-Control-transduced lungs. In a second group of rats, the segmental vasoconstrictor responses to U-46619 were determined in isolated, perfused lungs 3 days after transduction. Lungs from rats transduced with Adeno-iNOS had reduced total, arterial, and venous vasoconstrictor responses to U-46619 compared with sham, Adeno-Control, and control groups. In a third set of experiments, the response to 400 nM U-46619 in the presence of 10 μM l-NIL was not different in the isolated lungs from Adeno-Control- and Adeno-iNOS-transduced rats. We conclude that adenovirus-mediated iNOS gene transduction of the lung results in time-dependent iNOS overexpression, which attenuates the vascular constrictor responses to the thromboxane mimetic U-46619.


Oncogene ◽  
2003 ◽  
Vol 22 (38) ◽  
pp. 5967-5975 ◽  
Author(s):  
Christopher S Gondi ◽  
Sajani S Lakka ◽  
Niranjan Yanamandra ◽  
Khawar Siddique ◽  
Dzung H Dinh ◽  
...  

2001 ◽  
Vol 91 (4) ◽  
pp. 1574-1581 ◽  
Author(s):  
Young-Mi Go ◽  
Yong Chool Boo ◽  
Heonyong Park ◽  
Matthew C. Maland ◽  
Rakesh Patel ◽  
...  

Laminar shear stress activates c-Jun NH2-terminal kinase (JNK) by the mechanisms involving both nitric oxide (NO) and phosphatidylinositide 3-kinase (PI3K). Because protein kinase B (Akt), a downstream effector of PI3K, has been shown to phosphorylate and activate endothelial NO synthase, we hypothesized that Akt regulates shear-dependent activation of JNK by stimulating NO production. Here, we examined the role of Akt in shear-dependent NO production and JNK activation by expressing a dominant negative Akt mutant (AktAA) and a constitutively active mutant (AktMyr) in bovine aortic endothelial cells (BAEC). As expected, pretreatment of BAEC with the PI3K inhibitor (wortmannin) prevented shear-dependent stimulation of Akt and NO production. Transient expression of AktAA in BAEC by using a recombinant adenoviral construct inhibited the shear-dependent stimulation of NO production and JNK activation. However, transient expression of AktMyr by using a recombinant adenoviral construct did not induce JNK activation. This is consistent with our previous finding that NO is required, but not sufficient on its own, to activate JNK in response to shear stress. These results and our previous findings strongly suggest that shear stress triggers activation of PI3K, Akt, and endothelial NO synthase, leading to production of NO, which (along with O[Formula: see text], which is also produced by shear) activates Ras-JNK pathway. The regulation of Akt, NO, and JNK by shear stress is likely to play a critical role in its antiatherogenic effects.


1999 ◽  
Vol 90 (1) ◽  
pp. 109-114 ◽  
Author(s):  
Tord D. Alden ◽  
Debra D. Pittman ◽  
Elisa J. Beres ◽  
Gerald R. Hankins ◽  
David F. Kallmes ◽  
...  

Object. Gene therapy has many potential applications in neurosurgery. One application involves bone morphogenetic protein-2 (BMP-2), a low-molecular-weight glycoprotein that induces bone formation in vivo. Numerous studies have demonstrated that the BMP-2 protein can enhance spinal fusion. This study was undertaken to determine whether direct injection of an adenoviral construct containing the BMP-2 gene can be used for spinal fusion. Methods. Twelve athymic nude rats were used in this study. Recombinant, replication-defective type 5 adenovirus with the cytomegalovirus (CMV) promoter and BMP-2 gene (Ad-BMP-2) was used. A second adenovirus constructed with the CMV promoter and β-galactosidase (β-gal) gene (Ad-β-gal) was used as a control. In three groups (four rats each) 7.5 µl of virus (5 × 108 particles/µl) was injected percutaneously and paraspinally at the lumbosacral junction: Group 1 received Ad-BMP-2 bilaterally; Group 2 received Ad-BMP-2 on the right, Ad-β-gal on the left; and Group 3 received Ad-β-gal bilaterally. Computerized tomography (CT) scans of the lumbosacral spine were obtained at 3, 5, 8, and 12 weeks. At 12 weeks, the animals were killed and underwent histological inspection. Ectopic bone formation was observed both on three-dimensionally reconstructed CT scans and histological examination in all rats at sites treated with Ad-BMP-2. Histological analysis demonstrated bone at different stages of maturity adjacent to the spinous processes, laminae, and transverse processes. Conclusions. Results of this study clearly demonstrated that it is possible to produce in vivo endochondral bone formation by using direct adenoviral construct injection into the paraspinal musculature, which suggests that gene therapy may be useful for spinal fusion in the future.


Sign in / Sign up

Export Citation Format

Share Document