Action inhibitrice des cellules irradiées sur la greffe des cellules actives dans la tumeur T8 de Guérin. (Inhibitory effect of irradiated tumor cells of Guérin T8 tumor on the growth of viable cells)

1962 ◽  
Vol 29 (4) ◽  
pp. 489
Author(s):  
&NA;
BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chen-Chen Huang ◽  
Fang-Rui Liu ◽  
Qiang Feng ◽  
Xin-Yan Pan ◽  
Shu-Ling Song ◽  
...  

Abstract Background We prepared an anti-p21Ras scFv which could specifically bind with mutant and wild-type p21Ras. However, it cannot penetrate the cell membrane, which prevents it from binding to p21Ras in the cytoplasm. Here, the RGD4C peptide was used to mediate the scFv penetration into tumor cells and produce antitumor effects. Methods RGD4C-EGFP and RGD4C-p21Ras-scFv recombinant expression plasmids were constructed to express fusion proteins in E. coli, then the fusion proteins were purified with HisPur Ni-NTA. RGD4C-EGFP was used as reporter to test the factors affecting RGD4C penetration into tumor cell. The immunoreactivity of RGD4C-p21Ras-scFv toward p21Ras was identified by ELISA and western blotting. The ability of RGD4C-p21Ras-scFv to penetrate SW480 cells and colocalization with Ras protein was detected by immunocytochemistry and immunofluorescence. The antitumor activity of the RGD4C-p21Ras-scFv was assessed with the MTT, TUNEL, colony formation and cell migration assays. Chloroquine (CQ) was used an endosomal escape enhancing agent to enhance endosomal escape of RGD4C-scFv. Results RGD4C-p21Ras-scFv fusion protein were successfully expressed and purified. We found that the RGD4C fusion protein could penetrate into tumor cells, but the tumor cell entry of was time and concentration dependent. Endocytosis inhibitors and a low temperature inhibited RGD4C fusion protein endocytosis into cells. The change of the cell membrane potential did not affect penetrability. RGD4C-p21Ras-scFv could penetrate SW480 cells, effectively inhibit the growth, proliferation and migration of SW480 cells and promote this cells apoptosis. In addition, chloroquine (CQ) could increase endosomal escape and improve antitumor activity of RGD4C-scFv in SW480 cells. Conclusion The RGD4C peptide can mediate anti-p21Ras scFv entry into SW480 cells and produce an inhibitory effect, which indicates that RGD4C-p21Ras-scFv may be a potential therapeutic antibody for the treatment of ras-driven cancers.


2019 ◽  
Vol 6 (2) ◽  
pp. 86-99 ◽  
Author(s):  
E. M. Frantsiyants ◽  
E. A. Sheiko

The review examined and analyzed scientific publications on the effect of electromagnetic fields (EMF) on various sys­tems of the human body and animals with tumors, as well as on pain in the experiment and the clinic. The theoretical foundations and practical results of the use of EMF in various modulations and modes in the goals and objectives of oncology, including how to optimize the process of anesthesia and correct the vital activity of the body's functional systems with a tumor, are consecrated. Information is given on possible physicochemical effects, features, and mecha­nisms of therapeutic influence at various levels of a living organism. The ability of electromagnetic waves to transfer in­formation both within a single biosystem and at the level of a whole living organism with a tumor is shown. Studies of combined action of EMF and chemotherapy were analyzed. It has been established that there are experimental prerequisites for using this factor in order to induce changes in the permeability of the membranes of tumor cells by in­creasing the internalization of chemotherapeutic agents and, thus, enhance the antitumor effect. The role of EMF in the induction of apoptosis in tumor cells is shown. It has been shown that chemotherapy together with electromagnetic fields induces apoptosis and has an inhibitory effect on DNA synthesis in osteosarcoma cells, breast cancer, colon cancer, melanoma and other tumors. The role of magnetic fields in order to enhance the analgesic effect was investigated. The analgesic effect is due to the cessation or weakening of nerve impulses from the painful focus due to the elimination of hypoxia, the improvement of microcirculation, and the reduction of edema, it has been shown. Transcranial magnetic therapy is used as an analgesic tool in onconurology. The therapeutic anti-pain effect is associated with the stimulation of the antinociceptive system, an increase in the synthesis of natural analgesics — endorphins with their subsequent release into the cerebrospinal fluid and blood. As it has already been shown, with the increase in the intensity of pain and its duration, all indicators of the quality of life and the results of treatment of the patient deteriorate, so the search for ways to improve the antitumor effectiveness of specialized treatment and eliminate the causes that prevent their im­plementation continue to be relevant and in demand.


2015 ◽  
Vol 404 ◽  
pp. 26-33 ◽  
Author(s):  
Olivier Placide Noté ◽  
Dong Jihu ◽  
Cyril Antheaume ◽  
Maria Zeniou ◽  
Dieudonné Emmanuel Pegnyemb ◽  
...  

Endocrinology ◽  
2014 ◽  
Vol 156 (2) ◽  
pp. 534-547 ◽  
Author(s):  
Juan Pablo Petiti ◽  
Liliana del Valle Sosa ◽  
María Eugenia Sabatino ◽  
Alicia Maldré Vaca ◽  
Silvina Gutiérrez ◽  
...  

Pituitary tumor cells have a poor response to the growth inhibitory effect of TGFβ1, possibly resulting from the cross talk of TGFβ/Smads signal with other signaling pathways, an undescribed mechanism in these tumoral cells. To address this hypothesis, we investigated whether the mitogen-activated extracellular signal-regulated kinase (MEK)/ERK1/2 and phosphoinositide-3 kinase/protein kinase B (PI3K/Akt) pathways were able to regulate the antimitogenic effect of TGFβ1 on GH3B6 cells. TGFβ1 treatment decreased the cell proliferation and induced an activation of mothers against decapentaplegic homolog 2/3 (Smad2/3), effects that were potentiated by MEK and PI3K inhibitors, thus indicating the existence of a cross talk between TGFβ1/Smad with the MEK/ERK1/2 or PI3K/Akt pathways. In addition, through immunoprecipitation assays, a direct interaction was observed between Smad2/3-ERK1/2 and Smad2/3-Akt, which decreased when the GH3B6 cells were incubated with TGFβ1 in the presence of MEK or PI3K inhibitors, thereby suggesting that the ERK1/2- and Akt-activated states were involved. These Smad2/3-ERK1/2 and Smad2/3-Akt associations were also confirmed by confocal and transmission electron microscopy. These findings indicate that the TGFβ1-antimitogenic effect in GH3B6 cells was attenuated by the MEK/ERK1/2 and PI3K/Akt pathways via modulating Smad2/3 phosphorylation. This molecular mechanism could explain in part the refractory behavior of pituitary tumor cells to the inhibitory effect of TGFβ1.


Marine Drugs ◽  
2019 ◽  
Vol 17 (7) ◽  
pp. 415 ◽  
Author(s):  
Bolin Jing ◽  
Gong Cheng ◽  
Jianjun Li ◽  
Zhuo A. Wang ◽  
Yuguang Du

Chitooligosaccharides (COS), the only cationic oligosaccharide in nature, have been demonstrated to have anti-tumor activity. However, the inhibitory effects of COS on different stages of tumor metastasis are still unknown, and it is not clear what stage(s) of tumor metastasis COS targeted. To study the inhibitory effects of a new partially acetylated chitooligosaccharide (paCOS) with fraction of acetylation (FA) 0.46 on each phase of liver cancer cell metastasis, a dynamic tumor-vessel microsystem undergoing physiological flow was leveraged. paCOS (FA = 0.46) significantly inhibited proliferation of HepG2 cells through vascular absorption on the chip, and inhibited migration of HepG2 cells by inhibiting the formation of pseudopod in liver tumor cells. It was also found that paCOS at 10 μg/mL had a stronger inhibitory effect on liver tumor cells invading blood vessels than that of paCOS at 100 μg/mL, and paCOS at 100 μg/mL, which had a significant destructive effect on tumor vascular growth and barrier function. Moreover, paCOS reduced the number of liver tumor cells adhering onto the surface of HUVECs layer after 3 h of treatment. Therefore, the results revealed that paCOS had considerable potential as drugs for anti-tumor metastasis.


Biology ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 45 ◽  
Author(s):  
Thi Mong Diep Nguyen ◽  
Danièle Klett ◽  
Yves Combarnous

Mouse Leydig Tumor cells (mLTC), transiently expressing cAMP-dependent luciferase, were used to study the influence of sexual steroids and of adiponectin (ADPN) on the cAMP response to luteinizing hormones (LH). While testosterone and progesterone had no significant effect, several molecules with estrogenic activity (17β-estradiol, ethynylestradiol, and bisphenol A) provoked a decrease in intracellular cyclic AMP accumulation under 0.7 nM human LH stimulation. Adiponectin exhibited a bimodal dose-effect on LH response: synergistic between 2–125 ng/mL and inhibitory between 0.5–5 µg/mL. In brief, our data indicate that estrogens and ADPN separately exert rapid (<1 h) inhibitory and/or synergistic effects on cAMP response to LH in mLTC-1 cells. As the inhibitory effect of each estrogenic molecule was observed after only 1-h preincubation, it might be mediated through the G protein-coupled estrogen receptor (GPER) membrane receptor, but this remains to be demonstrated. The synergistic effect with low concentrations of ADPN with human Luteinizing Hormone (hLH) was observed with both fresh and frozen/thawed ADPN. In contrast, the inhibitory effect with high concentrations of ADPN was lost with frozen/thawed ADPN, suggesting deterioration of its polymeric structure.


Tumor Biology ◽  
2017 ◽  
Vol 39 (7) ◽  
pp. 101042831771668 ◽  
Author(s):  
Jun Wang ◽  
Yunjie Li ◽  
Fangfang Ma ◽  
Huifeng Zhou ◽  
Rong Ding ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1841-1841
Author(s):  
Dharminder Chauhan ◽  
Ajita V. Singh ◽  
Arghya Ray ◽  
Teru Hideshima ◽  
Paul G. Richardson ◽  
...  

Abstract Abstract 1841 Introduction: The dimeric Nuclear Factor-kappa B (NF-κB) transcription factor plays a key role during multiple myeloma (MM) cell adhesion-induced cytokine secretion in bone marrow stromal cells, which in turn triggers MM cell growth in a paracrine manner. NF-κB signaling pathway is mediated via canonical (IKK-α/IKK-β/NEMO-P50/65 or NF-κB1) and non-canonical (IKK-α/IKK-α/NIK-p52/RelB or NF-κB2) components. Prior studies have also linked constitutive activation of non-canonical NF-κB pathway to genetic abnormalities/mutation, allowing for an autocrine growth of MM cells. Other recent studies showed that constitutive NF-κB activity in tumor cells from MM patients renders these cells refractory to inhibition by bortezomib; and in fact, that bortezomib induces canonical NF-κB activity. These reports provided the impetus for the development of an agent with ability to modulate canonical and/or non-canonical NF-κB axis, allowing for a more robust and specific inhibition of NF-κB. Recent research and development efforts at Nereus Pharmaceuticals, Inc., have identified a novel small molecule acanthoic acid analog NPI-1342 as a potent NF-κB inhibitor. Here, we examined the effects of NPI-1342 on canonical versus non-canonical NF-κB signaling pathways, as well as its anti-tumor activity against MM cells using both in vitro and in vivo model systems. Methods: We utilized MM.1S, MM.1R, RPMI-8226, U266, KMS12PE, NCI-H929, OCI-MY5, LR5, Dox-40, OPM1, and OPM2 human MM cell lines, as well as purified tumor cells from patients with MM. Cell viability assays were performed using MTT and Trypan blue exclusion assays. Signal transduction pathways were evaluated using immunoblot analysis, ELISA, and enzymology assays. Animal model studies were performed using the SCID-hu model, which recapitulates the human BM milieu in vivo. Results: We first examined the effects of NPI-1342 on lipopolysaccharides (LPS)-induced NF-κB activity. Results showed that NPI-1342 inhibits LPS-stimulated NF-κB activity in vitro, as measured by phosphorylation of IkBa. To determine whether NPI-1342 triggers a differential inhibitory effect on IKKβ versus IKKα, MM.1S MM cells were treated with NPI-1342 for 48 hours, and protein lysates were subjected to kinase activity assays. NPI-1342 blocked IKKα, but not IKKβ or IKKγ phosphorylation. We next assessed whether the inhibitory effect of NPI-1342 on NF-κB activity is associated with cytotoxicity in MM cells. We utilized a panel of MM cell lines: at least five of these have mutations of TRAF3 (MM.1S, MM.1R, DOX40 and U266); one has no known NF-κB mutations (OPM2), and one has amplification of NF-κB1 (OCI-MY5). Treatment of MM cell lines and primary patient (CD138 positive) MM cells for 48 hours significantly decreased their viability (IC50 range 15–20 μM) (P < 0.001; n=3) without affecting the viability of normal peripheral blood mononuclear cells, suggesting selective anti-MM activity and a favorable therapeutic index for NPI-1342. NPI-1342-induced a marked increase in Annexin V+ and PI- apoptotic cell population (P < 0.001, n=3). Mechanistic studies showed that NPI-1342-triggered apoptosis in MM cells is associated with activation of caspase-8, caspase-9, caspase-3, and PARP cleavage. We next examined the in vivo effects of NPI-1342 in human MM xenograft models. For these studies, we utilized the SCID-hu MM model, which recapitulates the human BM milieu in vivo. In this model, MM cells are injected directly into human bone chips implanted subcutaneously in SCID mice, and MM cell growth is assessed by serial measurements of circulating levels of soluble human IL-6R in mouse serum. Treatment of tumor-bearing mice with NPI-1342 (20 mg/kg intraperitoneally, QD1-5 for 2 weeks), but not vehicle alone, significantly inhibits MM tumor growth in these mice (10 mice each group; P = 0.004). The doses of NPI-1342 were well tolerated by the mice, without significant weight loss. Finally, immunostaining of implanted human bone showed robust apoptosis and blockade of NF-κB in mice treated with NPI-1342 versus vehicle alone. Conclusions: We demonstrate the efficacy of a novel small molecule inhibitor of NF-κB NPI-1342 in MM using both in vitro and in vivo models. NPI-1342 blocks NF-κB activity with a preferential inhibitory activity against IKK-α component of NF-κB signaling. Our preclinical studies support evaluation of NPI-1342 as a potential MM therapy. Disclosures: Hideshima: Acetylon: Consultancy. Richardson:Millennium: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees. Palladino:Nereus Pharmaceuticals, Inc: Employment, Equity Ownership. Anderson:Celgene: Consultancy; Millennium: Consultancy; Onyx: Consultancy; Merck: Consultancy; Bristol Myers Squibb: Consultancy; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Acetylon:; Nereus Pharmaceuticals, Inc: Consultancy.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2902-2902
Author(s):  
Claire Fabre ◽  
Naoya Mimura ◽  
Kathryn Bobb ◽  
Gullu Gorgun ◽  
Diana D. Cirstea ◽  
...  

Abstract Abstract 2902 NF-kB plays a crucial role in the pathogenesis of multiple myeloma (MM). In MM cells, NF-kB pathway is constitutively activated and regulates transcription of genes whose protein products mediate proliferation, survival and drug resistance. In the context of the bone marrow (BM) microenvironment, NF-kB modulates the expression of cytokines (ie, IL6, TNFalpha) and adhesion molecules (ie, ICAM-1). Importantly, these cytokines and adhesion to BM stromal cells (BMSCs) further activate NF-kB pathway. Previous studies have shown that both canonical and non-canonical pathways contribute to total NF-kB activity in MM cells. Therefore inhibition of both pathways is necessary to target NF-kB. However, current therapeutic strategies can only inhibit the canonical, but not the non-canonical pathway. In this study, we examined the biologic impact of dual inhibition of both canonical and non-canonical pathways in MM cells using a novel small molecule inhibitor PBS-1086 (Profectus BioSciences) which selectively inhibits binding of Rel family member proteins to DNA. Importantly, the binding activity of all Rel family member proteins (RelA, RelB, NF-kB1, NF-kB2, cRel) to DNA was inhibited by PBS-1086, confirming that PBS-1086 blocks both canonical and non-canonical pathways in MM cell lines. We first investigated growth inhibitory effect of PBS-1086 in vitro. PBS-1086 potently inhibited the growth of MM cell lines (MM1S, MM1R, INA6, LR5, Dox40, KMS18, RPMI-8226 and U266) in a dose-dependent fashion with IC50 ranges of 0.15–5 μM. In contrast, PBS-1086 showed modest cytotoxicity on normal peripheral blood mononuclear cells from healthy volunteers. Similar growth inhibitory effect were observed in CD138+ primary tumor cells derived from MM patients. PBS-1086 induced apoptosis in MM1S cell line in a time-dependent manner, evidenced by annexin V-PI staining by flow cytometry and cleaved caspase 8, 9, 3 and PARP, suggesting that PBS-1086 activates both extrinsic and intrinsic apoptotic pathways. Importantly, PBS-1086 can overcome the proliferative and anti-apoptotic effects of BMSCs, associated with inhibition of NF-kB activity. We next examined the combination effect of PBS-1086 with other agents. PBS-1086 with bortezomib synergistically enhanced anti-MM activity even in bortezomib-resistant cell lines (Dox40, ANBL6-VR5) and primary tumor cells from MM patients. Finally, we investigated the effect of PBS-1086 in vivo in a murine xenograft model of human MM cells. Tumor-bearing mice were divided into 6 groups: non-treated, vehicle control, PBS-1086 (7.5 mg/kg ip daily), bortezomib (0.5 mg/kg IV, twice weekly) and the combination of PBS-1086 (either at 2.5 mg/kg or 7.5 mg/kg) with bortezomib. PBS-1086 showed significant anti-MM activity in combination (2.5 and 7.5 mg/kg) groups versus control group (p =0.00039 and p =0.00084, respectively). Combination groups also had significantly (p < 0.05) prolonged survival compared to single agent treatment group (PBS-1086 or bortezomib). In conclusion, our preclinical studies show that PBS-1086 is a promising novel therapeutic agent and our data supports further clinical evaluation of this agent in combination with bortezomib for the treatment of MM. Disclosures: Bobb: Profectus BioSciences: Employment; Rel-MD: Employment. Zhang:Profectus BioSciences: Employment; Rel-MD: Employment. Meshulam:Profectus BioSciences: Employment; Rel-MD: Employment. Mitsiades:Millennium: Consultancy, Honoraria. Richardson:Millennium: ; Celgene: ; Johnson & Johnson: ; Novartis: ; Bristol Myers Squibb:. Hideshima:Acetylon: Consultancy. Anderson:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Onyx: Membership on an entity's Board of Directors or advisory committees; Merck: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Acetylon: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document