Asymmetry of Erector Spinae Muscle Activity in Twisted Postures and Consistency of Muscle Activation Patterns Across Subjects

Spine ◽  
1996 ◽  
Vol 21 (22) ◽  
pp. 2651-2661 ◽  
Author(s):  
Jaap H. van Dieën
2019 ◽  
Vol 40 (01) ◽  
pp. 29-37
Author(s):  
Peemongkon Wattananon ◽  
Komsak Sinsurin ◽  
Sirikarn Somprasong

Background: Evidence suggests patients with non-specific low back pain (NSLBP) have altered lumbar and pelvic movement patterns. These changes could be associated with altered patterns of muscle activation. Objective: The study aimed to determine: (1) differences in the relative contributions and velocity of lumbar and pelvic movements between people with and without NSLBP, (2) the differences in lumbopelvic muscle activation patterns between people with and without NSLBP, and (3) the association between lumbar and pelvic movements and lumbopelvic muscle activation patterns. Methods: Subjects (8 healthy individuals and 8 patients with NSLBP) performed 2 sets of 3 repetitions of active forward bending, while motion and muscle activity data were collected simultaneously. Data derived were lumbar and pelvic ranges of motion and velocity, and ipsilateral and contralateral lumbopelvic muscle activities (internal oblique[Formula: see text]transverse abdominis (IO[Formula: see text]TA), lumbar multifidus (LM), erector spinae (ES) and gluteus maximus (GM) muscles). Results: Lumbar and pelvic motions showed trends, but exceeded 95% confidence minimal detectable difference (MDD[Formula: see text]), for greater pelvic motion [Formula: see text], less lumbar motion [Formula: see text] among patients with NSLBP. Significantly less activity was observed in the GM muscles bilaterally [Formula: see text] in the NSLBP group. A significant association [Formula: see text], [Formula: see text] was found between ipsilateral ES muscle activity and lumbar motion, while moderate, but statistically non-significant associations, were found between GM muscle activity bilaterally and lumbar velocity [Formula: see text]ipsilateral: [Formula: see text], [Formula: see text]; contralateral: [Formula: see text], [Formula: see text] in the NSLBP group. Conclusion: Findings indicated patients had greater pelvic contribution, but less lumbar contribution which was associated with less activation of the GM bilaterally.


Author(s):  
Roland van den Tillaar ◽  
Eirik Lindset Kristiansen ◽  
Stian Larsen

This study compared the kinetics, barbell, and joint kinematics and muscle activation patterns between a one-repetition maximum (1-RM) Smith machine squat and isometric squats performed at 10 different heights from the lowest barbell height. The aim was to investigate if force output is lowest in the sticking region, indicating that this is a poor biomechanical region. Twelve resistance trained males (age: 22 ± 5 years, mass: 83.5 ± 39 kg, height: 1.81 ± 0.20 m) were tested. A repeated two-way analysis of variance showed that Force output decreased in the sticking region for the 1-RM trial, while for the isometric trials, force output was lowest between 0–15 cm from the lowest barbell height, data that support the sticking region is a poor biomechanical region. Almost all muscles showed higher activity at 1-RM compared with isometric attempts (p < 0.05). The quadriceps activity decreased, and the gluteus maximus and shank muscle activity increased with increasing height (p ≤ 0.024). Moreover, the vastus muscles decreased only for the 1-RM trial while remaining stable at the same positions in the isometric trials (p = 0.04), indicating that potentiation occurs. Our findings suggest that a co-contraction between the hip and knee extensors, together with potentiation from the vastus muscles during ascent, creates a poor biomechanical region for force output, and thereby the sticking region among recreationally resistance trained males during 1-RM Smith machine squats.


2009 ◽  
Vol 101 (2) ◽  
pp. 969-979 ◽  
Author(s):  
Monica A. Gorassini ◽  
Jonathan A. Norton ◽  
Jennifer Nevett-Duchcherer ◽  
Francois D. Roy ◽  
Jaynie F. Yang

Intensive treadmill training after incomplete spinal cord injury can improve functional walking abilities. To determine the changes in muscle activation patterns that are associated with improvements in walking, we measured the electromyography (EMG) of leg muscles in 17 individuals with incomplete spinal cord injury during similar walking conditions both before and after training. Specific differences were observed between subjects that eventually gained functional improvements in overground walking (responders), compared with subjects where treadmill training was ineffective (nonresponders). Although both groups developed a more regular and less clonic EMG pattern on the treadmill, it was only the tibialis anterior and hamstring muscles in the responders that displayed increases in EMG activation. Likewise, only the responders demonstrated decreases in burst duration and cocontraction of proximal (hamstrings and quadriceps) muscle activity. Surprisingly, the proximal muscle activity in the responders, unlike nonresponders, was three- to fourfold greater than that in uninjured control subjects walking at similar speeds and level of body weight support, suggesting that the ability to modify muscle activation patterns after injury may predict the ability of subjects to further compensate in response to motor training. In summary, increases in the amount and decreases in the duration of EMG activity of specific muscles are associated with functional recovery of walking skills after treadmill training in subjects that are able to modify muscle activity patterns following incomplete spinal cord injury.


1989 ◽  
Vol 32 (2) ◽  
pp. 252-264 ◽  
Author(s):  
Anne Smith

EMG recordings were made from muscles of the jaw, lip, and neck during speech of 10 stutterers and 10 nonstutterers. One-second records of disfluent behaviors of stutterers and of fluent speech of the normal speakers were analyzed by computing cross correlations between all possible muscle pairs and spectra for each muscle channel. The cross correlation analysis indicated that for both the disfluent behavior of stutterers and the fluent speech of nonstutterers, jaw muscles (including antagonistic pairs), lip muscles, and neck muscles tend to be coactivated. Thus, no dramatic differences in muscle activation patterns were revealed in the correlational analysis. In contrast, spectral analysis revealed differences between muscle activity during disfluent behavior and fluent speech. During disfluencies the muscles of 6 of the stutterers showed large, rhythmic oscillations in the frequency range of 5 to 12 Hz. Large oscillations were not observed in this frequency range in the muscle activity of normal speakers. The oscillations in muscle activity during disfluencies generally occurred at the same frequency in the various muscle systems studied. These results suggest that diverse muscles are subject to common oscillatory synaptic drive during disfluent behaviors and that this drive is disruptive to speech production. A reasonable speculation is that the disruptive oscillatory drive is produced by tremorogenic mechanisms.


2018 ◽  
Vol 28 (06) ◽  
pp. 1750063 ◽  
Author(s):  
Zhan Li ◽  
David Guiraud ◽  
David Andreu ◽  
Anthony Gelis ◽  
Charles Fattal ◽  
...  

Functional electrical stimulation (FES) is a neuroprosthetic technique to help restore motor function of spinal cord-injured (SCI) patients. Through delivery of electrical pulses to muscles of motor-impaired subjects, FES is able to artificially induce their muscle contractions. Evoked electromyography (eEMG) is used to record such FES-induced electrical muscle activity and presents a form of [Formula: see text]-wave. In order to monitor electrical muscle activity under stimulation and ensure safe stimulation configurations, closed-loop FES control with eEMG feedback is needed to be developed for SCI patients who lose their voluntary muscle contraction ability. This work proposes a closed-loop FES system for real-time control of muscle activation on the triceps surae and tibialis muscle groups through online modulating pulse width (PW) of electrical stimulus. Subject-specific time-variant muscle responses under FES are explicitly reflected by muscle excitation model, which is described by Hammerstein system with its input and output being, respectively, PW and eEMG. Model predictive control is adopted to compute the PW based on muscle excitation model which can online update its parameters. Four muscle activation patterns are provided as desired control references to validate the proposed closed-loop FES control paradigm. Real-time experimental results on three able-bodied subjects and five SCI patients in clinical environment show promising performances of tracking the aforementioned reference muscle activation patterns based on the proposed closed-loop FES control scheme.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tadanobu Suehiro ◽  
Hiroshi Ishida ◽  
Kenichi Kobara ◽  
Hiroshi Osaka ◽  
Chiharu Kurozumi

Abstract Background The active hip abduction test (AHAbd) is widely used to evaluate lumbopelvic stability, but the onset of trunk muscle activation during the test in individuals with recurrent low back pain (rLBP) has not been investigated so far. It is important to investigate the pattern of trunk muscle activation during the AHAbd test to provide insight into the interpretation of observation-based assessment results; this may help to create exercise therapy interventions, from a movement control perspective, for people seeking treatment for rLBP. The purpose of this study was to compare the timing of trunk muscle activation between individuals with and without rLBP and to assess potential differences. Methods Seventeen subjects in remission from rLBP and 17 subjects without rLBP were recruited. We performed surface electromyography of the transversus abdominis/internal abdominal oblique, external oblique, erector spinae, and gluteus medius muscles during the AHAbd test on both sides. The onset of trunk muscle activation was calculated relative to the prime mover gluteus medius. The independent-samples t- and Mann-Whitney U tests were used to compare the onset of trunk muscle activation between the two groups. Results The onset of transversus abdominis/internal abdominal oblique activation on the ipsilateral (right AHAbd: −3.0 ± 16.2 vs. 36.3 ± 20.0 msec, left AHAbd: −7.2 ± 18.6 vs. 29.6 ± 44.3 ms) and contralateral sides (right AHAbd: −11.5 ± 13.9 vs. 24.4 ± 32.3 ms, left AHAbd: −10.1 ± 12.5 vs. 23.3 ± 17.2 ms) and erector spinae on the contralateral side (right AHAbd: 76.1 ± 84.9 vs. 183.9 ± 114.6 ms, left AHAbd: 60.7 ± 70.5 vs. 133.9 ± 98.6 ms) occurred significantly later in individuals with rLBP than in individuals without rLBP (p < 0.01). During the left AHAbd test, the ipsilateral erector spinae was also activated significantly later in individuals with rLBP than in individuals without rLBP (71.1 ± 80.1 vs. 163.8 ± 120.1 ms, p < 0.05). No significant difference was observed in the onset of the external oblique activation on the right and left AHAbd tests (p > 0.05). Conclusions Our results suggest that individuals with rLBP possess a trunk muscle activation pattern that is different from that of individuals without rLBP. These findings provide an insight into the underlying muscle activation patterns during the AHAbd test for people with rLBP and may support aggressive early intervention for neuromuscular control.


2020 ◽  
Vol 14 (4) ◽  
pp. 216-220
Author(s):  
Zahed Mantashloo ◽  
Heydar Sadeghi ◽  
Mehdi Khaleghi Tazji ◽  
Vanessa Rice ◽  
Elizabeth J Bradshaw

Objective: The aim of this study was to examine the effect of hyper pronated foot on postural control and ankle muscle activity during running and cutting movement (v-cut). Methods: In this Cross-Sectional study, 42 young physically active (exercising three times per week regularly) males participated in this study, including 21 with hyper-pronated feet and 21 with normal feet. Each participant completed a running and cutting task. Body postural control was measured using a force platform (1000Hz) which was synchronized with surface electromyography of selected ankle muscles. MATLAB software was used to process and analyze the data. One-away ANOVA was used to identify any differences between groups. Results: Differing muscle activation patterns in the surrounding ankle musculature (tibialis anterior, peroneus longus) through to reduced postural stability in the medial-lateral direction and increased vertical ground reaction forces were observed between groups. Conclusion: According to the obtained results it seems that subtalar hyper-pronation can be regarded as a factor affecting the biomechanics of cutting by changing activation patterns of the muscles surrounding the ankle, and reducing postural control of the body in medial-lateral direction, but not in anterior-posterior direction.


2011 ◽  
Vol 46 (4) ◽  
pp. 366-375 ◽  
Author(s):  
Sara Van Deun ◽  
Karel Stappaerts ◽  
Oron Levin ◽  
Luc Janssens ◽  
Filip Staes

Context: Acceptable measurement stability during data collection is critically important to research. To interpret differences in measurement outcomes among participants or changes within participants after an intervention program, we need to know whether the measurement is stable and consistent. Objective: To determine the within-session stability of muscle activation patterns for a voluntary postural-control task in a group of noninjured participants and a group of participants with chronic ankle instability (CAI). Design: Descriptive laboratory study. Setting: Musculoskeletal laboratory. Patients or Other Participants: Twenty control participants (8 men, 12 women; age = 21.8 ± 2.4 years, height = 164.3 ± 13.4 cm, mass = 68.4 ± 17.9 kg) and 20 participants with CAI (12 men, 8 women; age = 21.2 ± 2.1 years, height = 176 ± 10.2 cm, mass = 71.7 ± 11.3 kg). Intervention(s): Participants performed 4 barefoot standing trials, each of which included a 30-second double-legged stance followed by a 30-second single-legged stance in 3 conditions: with vision, without vision, and with vision on a balance pad. Main Outcome Measure(s): The activity of 7 muscles of the lower limb was measured for the stance task in the 3 different conditions for each trial. The onset of muscle activity and muscle recruitment order were determined and compared between the first and the fourth trials for both groups and for each condition. Results: We found no differences in the onset of muscle activity among trials for both groups or for each condition. The measurement error was 0.9 seconds at maximum for the control group and 0.12 seconds for the CAI group. In the control group, 70% to 80% of the participants used the same muscle recruitment order in both trials. In the CAI group, 75% to 90% used the same recruitment order. Conclusions: Within 1 session, measurement stability for this task was acceptable for use in further research. Furthermore, no differences were found in measurement stability across conditions in the control or CAI groups.


2017 ◽  
Vol 117 (3) ◽  
pp. 1100-1111 ◽  
Author(s):  
Marilee M. Nugent ◽  
Theodore E. Milner

Belly dance was used to investigate control of rhythmic undulating trunk movements in humans. Activation patterns in lumbar erector spinae muscles were recorded using surface electromyography at four segmental levels spanning T10 to L4. Muscle activation patterns for movement tempos of 2 Hz, 3 Hz, and as fast as possible (up to 6 Hz) were compared to test the hypothesis that frequency modulates muscle timing, causing pattern changes analogous to gait transitions. Groups of trained and untrained female subjects were compared to test the hypothesis that experience modifies muscle coordination patterns and the capacity for selective motion of spinal segments. Three distinct coordination patterns were observed. An ipsilateral simultaneous pattern (S) and a diagonal synergy (D) dominated at lower frequencies. The S pattern was selected most often by novices and resembled the standing wave of activation underlying the alternating lateral trunk bending in salamander trotting. At 2 Hz, most trained subjects selected the D pattern, suggesting a greater capacity for segmental specificity compared with untrained subjects. At 3–4 Hz, there emerged an asynchronous pattern (A) analogous to the rostral-caudal traveling wave in salamander and lamprey swimming. The neural networks and mechanisms identified in primitive vertebrates, such as chains of coupled oscillators and segmental crossed inhibitory connections, could explain the patterns observed in this study in humans. Training allows modification of these patterns, possibly through improved capacity for selectively exciting or inhibiting segmental pattern generators. NEW & NOTEWORTHY Belly dance provides a novel approach for studying spinal cord neural circuits. New evidence suggests that primitive locomotor circuits may be conserved in humans. Erector spinae activation patterns during the hip shimmy at different tempos are similar to those observed in salamander walking and swimming. As movement frequency increases, a sequential pattern similar to lamprey swimming emerges, suggesting that primal involuntary control mechanisms dominate in fast lateral rhythmic spine undulations even in humans.


Sign in / Sign up

Export Citation Format

Share Document