P12 NEUROPROTECTIVE EFFECTS OF TESTOSTERONE ON 3-NITROTYROSINE-EXPOSED MOUSE NEUROBLASTOMA CELLS

2004 ◽  
Vol 15 (5) ◽  
pp. A11
Author(s):  
V. Chisu ◽  
P. Manca ◽  
G. Lepore ◽  
S. Gadau ◽  
V. Farina ◽  
...  
2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Panchanan Maiti ◽  
Gary L. Dunbar

Aggregation of amyloid beta protein (Aβ) and phosphorylated tau (p-Tau) plays critical roles in pathogenesis of Alzheimer’s disease (AD). As an antiamyloid natural polyphenol, curcumin (Cur) has a potential role in prevention of neurodegeneration in AD. However, due to limited absorption of the dietary Cur, the solid lipid Cur particles (SLCP) have been suggested as being more effective for AD therapy. In the present study, we compared the role of dietary Cur and SLCP on oxidative stress, neuronal death, p-Tau level, and certain cell survival markers in vitro, after exposure to Aβ42. Mouse neuroblastoma cells were exposed to Aβ42 for 24 h and incubated with or without dietary Cur and/or SLCP. Reactive oxygen species (ROS), apoptotic cell death, p-Tau, and tau kinase (including GSK-3β and cell survival markers, such as total Akt, phosphorylated Akt, and PSD95 levels) were investigated. SLCP showed greater permeability than dietary Cur in vitro, decreased ROS production, and prevented apoptotic death. In addition, SLCP also inhibited p-Tau formation and significantly decreased GSK-3β levels. Further, the cell survival markers, such as total Akt, p-Akt, and PSD95 levels, were more effectively maintained by SLCP than dietary Cur in Aβ42 exposed cells. Therefore, SLCP may provide greater neuroprotection than dietary Cur in Alzheimer’s disease.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 940
Author(s):  
Muganti Rajah Kumar ◽  
Swee Keong Yeap ◽  
Han Chung Lee ◽  
Nurul Elyani Mohamad ◽  
Muhammad Nazirul Mubin Aziz ◽  
...  

Kefir, a fermented probiotic drink was tested for its potential anti-oxidative, anti-apoptotic, and neuroprotective effects to attenuate cellular oxidative stress on human SH-SY5Y neuroblastoma cells. Here, the antioxidant potentials of the six different kefir water samples were analysed by total phenolic content (TPC), total flavonoid content (TFC), ferric reducing antioxidant power (FRAP), and 2,2′-diphenyl-1-picrylhydrazyl radical (DPPH) assays, whereas the anti-apoptotic activity on hydrogen peroxide (H2O2) induced SH-SY5Y cells was examined using MTT, AO/PI double staining, and PI/Annexin V-FITC assays. The surface and internal morphological features of SH-SY5Y cells were studied using scanning and transmission electron microscopy. The results indicate that Kefir B showed the higher TPC (1.96 ± 0.54 µg GAE/µL), TFC (1.09 ± 0.02 µg CAT eq/µL), FRAP (19.68 ± 0.11 mM FRAP eq/50 µL), and DPPH (0.45 ± 0.06 mg/mL) activities compared to the other kefir samples. The MTT and PI/Annexin V-FITC assays showed that Kefir B pre-treatment at 10 mg/mL for 48 h resulted in greater cytoprotection (97.04%), and a significantly lower percentage of necrotic cells (7.79%), respectively. The Kefir B pre-treatment also resulted in greater protection to cytoplasmic and cytoskeleton inclusion, along with the conservation of the surface morphological features and the overall integrity of SH-SY5Y cells. Our findings indicate that the anti-oxidative, anti-apoptosis, and neuroprotective effects of kefir were mediated via the upregulation of SOD and catalase, as well as the modulation of apoptotic genes (Tp73, Bax, and Bcl-2).


1983 ◽  
Vol 11 (3) ◽  
pp. 135-145
Author(s):  
Erik Walum

Summary Acrylamide, a well known neurotoxic compound, was used in a first evaluation of cultured mouse neuroblastoma cells as an alternative to animal models for neurotoxicological studies. Hence, the effects of acrylamide on the growth, size, morphology and leucine incorporation of three neuroblastoma (41A3, N18 and N1E115), one neuroblastoma x glioma hybrid (NG108CC15), two glioma (138MG and C6) and two fibroblast (RLF and RMC) cell lines were studied. It was found that the concentration of acrylamide needed to inhibit the growth by 50% in 24 hr was similar in all cell lines, i.e. around 2 x 10-4g/ml culture medium. In the two cell lines, N1E115 and NG108CC15, acrylamide at this concentration caused neurite retraction and at higher concentrations (5 x 10-4g/ml) a decrease in cell viability. In a concentration range of 5 x 10-5 - 5 x 10-4g/ml acrylamide did not affect cell size, or at 2 x 10-4g/ml incorporation of leucine into trichloroacetic acid precipitable material. It is suggested that acrylamide interferes with a biochemical process common to all the tested cells, but of greater importance in differentiated nerve cells than in others. Whether this process is consistent with the in vivo target for the neurotoxic action of acrylamide remains to be unravelled.


1981 ◽  
Vol 47 (1) ◽  
pp. 1-24
Author(s):  
G.A. Sharp ◽  
M. Osborn ◽  
K. Weber

Morphologically undifferentiated and differentiated mouse neuroblastoma N115 and N18 cells were examined after serial sectioning by electron microscopy. A sizeable percentage of the cells revealed multiple centrioles, usually clustered together in the perinuclear area with 2 preferential locations, i.e. above and below the largest nuclear diameter. These results indicate that the multiple microtubule-organizing centres previously visualized by immunofluorescence microscopy with tubulin antibody in neuroblastoma cells recovering from Colcemid poisoning are most likely in majority related to multiple centrioles. This interpretation is further strengthened by experiments in which cells are first recorded in the fluorescence microscope and then after serial sectioning in the electron microscope. The results show that under optimal conditions immunofluorescence microscopy is able to visualize single centrioles. The possible biological significance of the combined electron and immunofluorescence microscopical results is discussed.


Sign in / Sign up

Export Citation Format

Share Document