scholarly journals 621: NOVEL ROLE OF ZONULIN IN THE PATHOPHYSIOLOGY OF GASTRIC MOTILITY: A CLINICAL-TRANSLATIONAL STUDY

2021 ◽  
Vol 50 (1) ◽  
pp. 303-303
Author(s):  
Enid Martinez ◽  
Jinggang Lan ◽  
Alba Miranda-Ribera ◽  
Maria Fiorentino ◽  
Nilesh Mehta ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Enid E. Martinez ◽  
Jinggang Lan ◽  
Takumi Konno ◽  
Alba Miranda-Ribera ◽  
Maria Fiorentino ◽  
...  

AbstractWe examined the relationship between zonulin and gastric motility in critical care patients and a translational mouse model of systemic inflammation. Gastric motility and haptoglobin (HP) 2 isoform quantification, proxy for zonulin, were examined in patients. Inflammation was triggered by lipopolysaccharide (LPS) injection in C57Bl/6 zonulin transgenic mouse (Ztm) and wildtype (WT) mice as controls, and gastro-duodenal transit was examined by fluorescein-isothiocyanate, 6 and 12 h after LPS-injection. Serum cytokines and zonulin protein levels, and zonulin gastric-duodenal mRNA expression were examined. Eight of 20 patients [14 years, IQR (12.25, 18)] developed gastric dysmotility and were HP2 isoform-producing. HP2 correlated with gastric dysmotility (r = − 0.51, CI − 0.81 to 0.003, p = 0.048). LPS injection induced a time-dependent increase in IL-6 and KC-Gro levels in all mice (p < 0.0001). Gastric dysmotility was reduced similarly in Ztm and WT mice in a time-dependent manner. Ztm had 16% faster duodenal motility than WT mice 6H post-LPS, p = 0.01. Zonulin mRNA expression by delta cycle threshold (dCT) was higher in the stomach (9.7, SD 1.4) than the duodenum (13.9, SD 1.4) 6H post-LPS, p = 0.04. Serum zonulin protein levels were higher in LPS-injected mice compared to vehicle-injected animals in a time-dependent manner. Zonulin correlated with gastric dysmotility in patients. A mouse model had time-dependent gastro-duodenal dysmotility after LPS-injection that paralleled zonulin mRNA expression and protein levels.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Xinyan Gao ◽  
Yongfa Qiao ◽  
Baohui Jia ◽  
Xianghong Jing ◽  
Bin Cheng ◽  
...  

Previous studies have demonstrated the efficacy of electroacupuncture at ST36 for patients with gastrointestinal motility disorders. While several lines of evidence suggest that the effect may involve vagal reflex, the precise molecular mechanism underlying this process still remains unclear. Here we report that the intragastric pressure increase induced by low frequency electric stimulation at ST36 was blocked by AP-5, an antagonist of N-methyl-D-aspartate receptors (NMDARs). Indeed, stimulating ST36 enhanced NMDAR-mediated, but not 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic-acid-(AMPA-) receptor-(AMPAR-) mediated synaptic transmission in gastric-projecting neurons of the dorsal motor nucleus of the vagus (DMV). We also identified that suppression of presynapticμ-opioid receptors may contribute to upregulation of NMDAR-mediated synaptic transmission induced by electroacupuncture at ST36. Furthermore, we determined that the glutamate-receptor-2a-(NR2A-) containing NMDARs are essential for NMDAR-mediated enhancement of gastric motility caused by stimulating ST36. Taken together, our results reveal an important role of NMDA receptors in mediating enhancement of gastric motility induced by stimulating ST36.


2000 ◽  
Vol 279 (5) ◽  
pp. G925-G930 ◽  
Author(s):  
G. Cuche ◽  
J. C. Cuber ◽  
C. H. Malbert

The aim of this study was to evaluate the nervous and humoral pathways involved in short-chain fatty acid (SCFA)-induced ileal brake in conscious pigs. The role of extrinsic ileal innervation was evaluated after SCFA infusion in innervated and denervated Babkin's ileal loops, and gastric motility was measured with strain gauges. Peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) concentrations were evaluated in both situations. The possible involvement of absorbed SCFA was tested by using intravenous infusion of acetate. Ileal SCFA infusion in the intact terminal ileum decreased the amplitude of distal and terminal antral contractions (33 ± 1.2 vs. 49 ± 1.2% of the maximal amplitude recorded before infusion) and increased their frequency (1.5 ± 0.11 vs. 1.3 ± 0.10/min). Similar effects were observed during SCFA infusion in ileal innervated and denervated loops (amplitude, 35 ± 1.0 and 34 ± 0.8 vs. 47 ± 1.3 and 43 ± 1.2%; frequency, 1.4 ± 0.07 and 1.6 ± 0.06 vs. 1.1 ± 0.14 and 1.0 ± 0.12/min). Intravenous acetate did not modify the amplitude and frequency of antral contractions. PYY but not GLP-1 concentrations were increased during SCFA infusion in innervated and denervated loops. In conclusion, ileal SCFA inhibit distal gastric motility by a humoral pathway involving the release of an inhibiting factor, which is likely PYY.


2020 ◽  
Author(s):  
Yvan Vachez ◽  
Marie Bahout ◽  
Robin Magnard ◽  
Pierre-Maxime David ◽  
Carole Carcenac ◽  
...  

ABSTRACTApathy is frequently reported in Parkinson’s disease (PD) patients under subthalamic nucleus deep brain stimulation (STN-DBS). The prevailing clinical view for apathy following STN-DBS is the reduction of dopaminergic medication. However, few clinical reports and recent experimental data suggested the pathogenicity of bilateral STN-DBS on motivation, challenging the leading opinion. Here, we investigate whether bilateralism of STN-DBS influences apathy outcome after STN-DBS, combining pre-clinical and clinical approaches. We assess the motivational effects of chronic unilateral STN-DBS in rats in the exact same conditions having highlighted a loss of motivation under bilateral STN-DBS. Clinical data are obtained by the follow-up of a cohort of parkinsonian patients undergoing unilateral STN-DBS and coming from the clinical center that described apathy related to bilateral STN-DBS itself. Despite an acute effect, which fades rapidly, unilateral STN-DBS did not induce a loss of motivation reminiscent to apathy in rats. In patients, apathy did not increase between the preoperative and the post-operative assessment. Together, those data demonstrate that bilateral but not unilateral STN-DBS can induce a loss of motivation in both rats and patients. This constitutes another evidence of the role of STN-DBS itself for apathy in PD.


2013 ◽  
Vol 24 (10) ◽  
pp. 2581-2588 ◽  
Author(s):  
L. Stenholm ◽  
J. Stoehlmacher-Williams ◽  
S.E. Al-Batran ◽  
N. Heussen ◽  
S. Akin ◽  
...  

1984 ◽  
Vol 247 (2) ◽  
pp. G117-G126 ◽  
Author(s):  
K. M. Sanders

Muscles of the stomach possess the ability to synthesize several prostaglandins. These compounds function as local regulatory agents by influencing the motor performance of the muscle cells. In the distal stomach the dominant effect of endogenous prostaglandins is to decrease the amplitude of contractions and decrease the ability of the muscles to respond to excitatory stimuli. Prostaglandins also have a chronotropic role in the distal stomach, and they are responsible for the frequency effect of gastrin pentapeptide. In the proximal stomach prostaglandins have an opposite role; they promote tonic contraction. Because of the diverse effects of prostaglandins, they probably have complicated effects on gastric motility. In general, emptying of solids should be retarded by endogenous prostaglandins, whereas emptying of fluids may be facilitated by these compounds. Overproduction of prostaglandins may produce abnormal motility patterns and affect gastric emptying. A case of gastric pseudoobstruction apparently involving prostaglandins is discussed.


2019 ◽  
Vol 172 ◽  
pp. 31-41 ◽  
Author(s):  
Takenori Onaga ◽  
Tomohiko Shimoda ◽  
Taro Ohishi ◽  
Yumiko Yasui ◽  
Hideaki Hayashi

Sign in / Sign up

Export Citation Format

Share Document