plakophilin 2
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 34)

H-INDEX

31
(FIVE YEARS 6)

Bioengineered ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 140-154
Author(s):  
Hao Yan ◽  
Yong Zhou ◽  
Zhujiang Chen ◽  
Xiaokang Yan ◽  
Ling Zhu

2021 ◽  
Vol 22 (21) ◽  
pp. 11875
Author(s):  
Fang Hua ◽  
Wenzhuo Hao ◽  
Lingyan Wang ◽  
Shitao Li

Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that instigates several signaling cascades, including the NF-κB signaling pathway, to induce cell differentiation and proliferation. Overexpression and mutations of EGFR are found in up to 30% of solid tumors and correlate with a poor prognosis. Although it is known that EGFR-mediated NF-κB activation is involved in tumor development, the signaling axis is not well elucidated. Here, we found that plakophilin 2 (PKP2) and the linear ubiquitin chain assembly complex (LUBAC) were required for EGFR-mediated NF-κB activation. Upon EGF stimulation, EGFR recruited PKP2 to the plasma membrane, and PKP2 bridged HOIP, the catalytic E3 ubiquitin ligase in the LUBAC, to the EGFR complex. The recruitment activated the LUBAC complex and the linear ubiquitination of NEMO, leading to IκB phosphorylation and subsequent NF-κB activation. Furthermore, EGF-induced linear ubiquitination was critical for tumor cell proliferation and tumor development. Knockout of HOIP impaired EGF-induced NF-κB activity and reduced cell proliferation. HOIP knockout also abrogated the growth of A431 epidermal xenograft tumors in nude mice by more than 70%. More importantly, the HOIP inhibitor, HOIPIN-8, inhibited EGFR-mediated NF-κB activation and cell proliferation of A431, MCF-7, and MDA-MB-231 cancer cells. Overall, our study reveals a novel linear ubiquitination signaling axis of EGFR and that perturbation of HOIP E3 ubiquitin ligase activity is potential targeted cancer therapy.


2021 ◽  
Vol 7 (42) ◽  
Author(s):  
Kehan Zhang ◽  
Paige E. Cloonan ◽  
Subramanian Sundaram ◽  
Feng Liu ◽  
Shoshana L. Das ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Aurore Lyon ◽  
Chantal J. M. van Opbergen ◽  
Mario Delmar ◽  
Jordi Heijman ◽  
Toon A. B. van Veen

Background: Patients with arrhythmogenic cardiomyopathy may suffer from lethal ventricular arrhythmias. Arrhythmogenic cardiomyopathy is predominantly triggered by mutations in plakophilin-2, a key component of cell-to-cell adhesion and calcium cycling regulation in cardiomyocytes. Calcium dysregulation due to plakophilin-2 mutations may lead to arrhythmias but the underlying pro-arrhythmic mechanisms remain unclear.Aim: To unravel the mechanisms by which calcium-handling abnormalities in plakophilin-2 loss-of-function may contribute to proarrhythmic events in arrhythmogenic cardiomyopathy.Methods: We adapted a computer model of mouse ventricular electrophysiology using recent experimental calcium-handling data from plakophilin-2 conditional knock-out (PKP2-cKO) mice. We simulated individual effects of beta-adrenergic stimulation, modifications in connexin43-mediated calcium entry, sodium-calcium exchanger (NCX) activity and ryanodine-receptor 2 (RyR2) calcium affinity on cellular electrophysiology and occurrence of arrhythmogenic events (delayed-afterdepolarizations). A population-of-models approach was used to investigate the generalizability of our findings. Finally, we assessed the potential translation of proposed mechanisms to humans, using a human ventricular cardiomyocyte computational model.Results: The model robustly reproduced the experimental calcium-handling changes in PKP2-cKO cardiomyocytes: an increased calcium transient amplitude (562 vs. 383 nM), increased diastolic calcium (120 vs. 91 nM), reduced L-type calcium current (15.0 vs. 21.4 pA/pF) and an increased free SR calcium (0.69 vs. 0.50 mM). Under beta-adrenergic stimulation, PKP2-cKO models from the population of models (n = 61) showed a higher susceptibility to delayed-afterdepolarizations compared to control (41 vs. 3.3%). Increased connexin43-mediated calcium entry further elevated the number of delayed-afterdepolarizations (78.7%, 2.5-fold increase in background calcium influx). Elevated diastolic cleft calcium appeared responsible for the increased RyR2-mediated calcium leak, promoting delayed-afterdepolarizations occurrence. A reduction in RyR2 calcium affinity prevented delayed-afterdepolarizations in PKP2-cKO models (24.6 vs. 41%). An additional increase in INCX strongly reduced delayed-afterdepolarizations occurrence, by lowering diastolic cleft calcium levels. The human model showed similar outcomes, suggesting a potential translational value of these findings.Conclusion: Beta-adrenergic stimulation and connexin43-mediated calcium entry upon loss of plakophilin-2 function contribute to generation of delayed-afterdepolarizations. RyR2 and NCX dysregulation play a key role in modulating these proarrhythmic events. This work provides insights into potential future antiarrhythmic strategies in arrhythmogenic cardiomyopathy due to plakophilin-2 loss-of-function.


Cardiology ◽  
2021 ◽  
Author(s):  
Anneli Svensson ◽  
Pyotr G. Platonov ◽  
Kristina H. Haugaa ◽  
Wojciech Zareba ◽  
Henrik Kjærulf Jensen ◽  
...  

Author(s):  
Annika M. Dries ◽  
Anna Kirillova ◽  
Chloe M. Reuter ◽  
John Garcia ◽  
Hana Zouk ◽  
...  

Author(s):  
Ning Yu ◽  
Jinmei Zhang ◽  
Sherill T. Phillips ◽  
Steven Offenbacher ◽  
Shaoping Zhang

Author(s):  
Elżbieta K. Biernacka ◽  
Karolina Borowiec ◽  
Maria Franaszczyk ◽  
Małgorzata Szperl ◽  
Alessandra Rampazzo ◽  
...  

AbstractArrhythmogenic right ventricular cardiomyopathy (ARVC) is mainly caused by mutations in genes encoding desmosomal proteins. Variants in plakophilin-2 gene (PKP2) are the most common cause of the disease, associated with conventional ARVC phenotype. The study aims to evaluate the prevalence of PKP2 variants and examine genotype–phenotype correlation in Polish ARVC cohort. All 56 ARVC patients fulfilling the current criteria were screened for genetic variants in PKP2 using denaturing high-performance liquid chromatography or next-generation sequencing. The clinical evaluation involved medical history, electrocardiogram, echocardiography, and follow-up. Ten variants (5 frameshift, 2 nonsense, 2 splicing, and 1 missense) in PKP2 were found in 28 (50%) cases. All truncating variants are classified as pathogenic/likely pathogenic, while the missense variant is classified as variant of uncertain significance. Patients carrying a PKP2 mutation were younger at diagnosis (p = 0.003), more often had negative T waves in V1–V3 (p = 0.01), had higher left ventricular ejection fraction (p = 0.04), and were less likely to present symptoms of heart failure (p = 0.01) and left ventricular damage progression (p = 0.04). Combined endpoint of death or heart transplant was more frequent in subgroup without PKP2 mutation (p = 0.03). Pathogenic variants in PKP2 are responsible for 50% of ARVC cases in the Polish population and are associated with a better prognosis. ARVC patients with PKP2 mutation are less likely to present left ventricular involvement and heart failure symptoms. Combined endpoint of death or heart transplant was less frequent in this group.


Sign in / Sign up

Export Citation Format

Share Document