Seasonal Effect of Ozone Concentrations on Mortality in 9 French Cities

Epidemiology ◽  
2011 ◽  
Vol 22 ◽  
pp. S193-S194
Author(s):  
Mathilde Pascal ◽  
Edouard Chatignoux ◽  
Vérène Wagner ◽  
Myriam Blanchard ◽  
Magali Corso ◽  
...  
2017 ◽  
Vol 68 (4) ◽  
pp. 824-829
Author(s):  
Cornel Ianache ◽  
Laurentiu Predescu ◽  
Mirela Predescu ◽  
Dumitru Dumitru

The serious air pollution problem has determined public concerns, worldwide. One of the main challenges for countries all over the world is caused by the elevated levels of ground-level ozone (O3) concentrations and its anthropogenic precursors. Ploiesti city, as one of the major urban area of Romania, is facing the same situation. This research aims to investigate spatial and temporal distribution characteristics of O3 in relationship with nitrogen oxides (NOx) using statistical analysis methods. Hourly O3 and NOx measurements were collected during 2014 year in Ploiesti. The results obtained showed that the ozone spatial distribution was non-normal for each month in 2014. The diurnal cycle of ground-level ozone concentrations showed a mid-day peak, while NOx diurnal variations presented 2 daily peaks, one in the morning (7:00 a.m.) and one in the afternoon (between 5:00 and 7:00 p.m.). In addition, it was observed a distinct pattern of weekly variations for O3 and NOx. Like in many other urban areas, the results indicated the presence of the �ozone weekend effect� in Ploiesti during the 2014 year, ozone concentrations being slightly higher on weekends compared to weekdays. For the same monitoring site, the nitrogen oxides were less prevalent on Saturdays and Sundays, probably due to reducing of road traffic and other pollution-generating activities on weekends than during the week.


Author(s):  
An Zhang ◽  
Jinhuang Lin ◽  
Wenhui Chen ◽  
Mingshui Lin ◽  
Chengcheng Lei

Long-term exposure to ozone pollution will cause severe threats to residents’ physical and mental health. Ground-level ozone is the most severe air pollutant in China’s Pearl River Delta Metropolitan Region (PRD). It is of great significance to accurately reveal the spatial–temporal distribution characteristics of ozone pollution exposure patterns. We used the daily maximum 8-h ozone concentration data from PRD’s 55 air quality monitoring stations in 2015 as input data. We used six models of STK and ordinary kriging (OK) for the simulation of ozone concentration. Then we chose a better ozone pollution prediction model to reveal the ozone exposure characteristics of the PRD in 2015. The results show that the Bilonick model (BM) model had the highest simulation precision for ozone in the six models for spatial–temporal kriging (STK) interpolation, and the STK model’s simulation prediction results are significantly better than the OK model. The annual average ozone concentrations in the PRD during 2015 showed a high spatial variation in the north and east and low in the south and west. Ozone concentrations were relatively high in summer and autumn and low in winter and spring. The center of gravity of ozone concentrations tended to migrate to the north and west before moving to the south and then finally migrating to the east. The ozone’s spatial autocorrelation was significant and showed a significant positive correlation, mainly showing high-high clustering and low-low clustering. The type of clustering undergoes temporal migration and conversion over the four seasons, with spatial autocorrelation during winter the most significant.


2011 ◽  
Vol 409 (6) ◽  
pp. 1123-1133 ◽  
Author(s):  
Alejandro Quintela-del-Río ◽  
Mario Francisco-Fernández

2011 ◽  
Vol 63 (12) ◽  
pp. 2983-2991 ◽  
Author(s):  
M. Métadier ◽  
J. L. Bertrand-Krajewski

Continuous high resolution long term turbidity measurements along with continuous discharge measurements are now recognised as an appropriate technique for the estimation of in sewer total suspended solids (TSS) and Chemical Oxygen Demand (COD) loads during storm events. In the combined system of the Ecully urban catchment (Lyon, France), this technique is implemented since 2003, with more than 200 storm events monitored. This paper presents a method for the estimation of the dry weather (DW) contribution to measured total TSS and COD event loads with special attention devoted to uncertainties assessment. The method accounts for the dynamics of both discharge and turbidity time series at two minutes time step. The study is based on 180 DW days monitored in 2007–2008. Three distinct classes of DW days were evidenced. Variability analysis and quantification showed that no seasonal effect and no trend over the year were detectable. The law of propagation of uncertainties is applicable for uncertainties estimation. The method has then been applied to all measured storm events. This study confirms the interest of long term continuous discharge and turbidity time series in sewer systems, especially in the perspective of wet weather quality modelling.


1987 ◽  
Vol 21 (12) ◽  
pp. 2673-2679 ◽  
Author(s):  
Fouad I. Kanbour ◽  
Shatha Y. Faiq ◽  
Faiza A. Al-Taie ◽  
Abdul Messih N. Kitto ◽  
Nessren Bader

2012 ◽  
Vol 131 (2) ◽  
pp. 645-651 ◽  
Author(s):  
Dora Valencia ◽  
Efrain Alday ◽  
Ramon Robles-Zepeda ◽  
Adriana Garibay-Escobar ◽  
Juan C. Galvez-Ruiz ◽  
...  

2012 ◽  
Vol 30 (3) ◽  
pp. 515-526 ◽  
Author(s):  
M. Palmroth ◽  
R. C. Fear ◽  
I. Honkonen

Abstract. We examine the spatial variation of magnetospheric energy transfer using a global magnetohydrodynamic (MHD) simulation (GUMICS-4) and a large data set of flux transfer events (FTEs) observed by the Cluster spacecraft. Our main purpose is to investigate whether it is possible to validate previous results on the spatial energy transfer variation from the GUMICS-4 simulation using the statistical occurrence of FTEs, which are manifestations of magnetospheric energy transfer. Previous simulation results have suggested that the energy transfer pattern at the magnetopause rotates according to the interplanetary magnetic field (IMF) orientation, and here we investigate whether a similar rotation is seen in the locations at which FTE signatures are observed. We find that there is qualitative agreement between the simulation and observed statistics, as the peaks in both distributions rotate as a function of the IMF clock angle. However, it is necessary to take into account the modulation of the statistical distribution that is caused by a bias towards in situ FTE signatures being observed in the winter hemisphere (an effect that has previously been predicted and observed in this data set). Taking this seasonal effect into account, the FTE locations support the previous simulation results and confirm the earlier prediction that the energy transfers in the plane of the IMF. In addition, we investigate the effect of the dipole orientation (both the dipole tilt angle and its orientation in the plane perpendicular to the solar wind flow) on the energy transfer spatial distribution. We find that the energy transfer occurs mainly in the summer hemisphere, and that the dayside reconnection region is located asymmetrically about the subsolar position. Finally, we find that the energy transfer is 10% larger at equinox conditions than at solstice, contributing to the discussion concerning the semiannual variation of magnetospheric dynamics (known as "the Russell-McPherron effect").


Sign in / Sign up

Export Citation Format

Share Document