scholarly journals Gene Therapy for Hearing Loss on the Horizon

2021 ◽  
Vol 75 (1) ◽  
pp. 14,15,16
Author(s):  
Gordon Glantz
Keyword(s):  
Author(s):  
Aida Nourbakhsh ◽  
Brett M. Colbert ◽  
Eric Nisenbaum ◽  
Aziz El-Amraoui ◽  
Derek M. Dykxhoorn ◽  
...  

AbstractProgressive non-syndromic sensorineural hearing loss (PNSHL) is the most common cause of sensory impairment, affecting more than a third of individuals over the age of 65. PNSHL includes noise-induced hearing loss (NIHL) and inherited forms of deafness, among which is delayed-onset autosomal dominant hearing loss (AD PNSHL). PNSHL is a prime candidate for genetic therapies due to the fact that PNSHL has been studied extensively, and there is a potentially wide window between identification of the disorder and the onset of hearing loss. Several gene therapy strategies exist that show potential for targeting PNSHL, including viral and non-viral approaches, and gene editing versus gene-modulating approaches. To fully explore the potential of these therapy strategies, a faithful in vitro model of the human inner ear is needed. Such models may come from induced pluripotent stem cells (iPSCs). The development of new treatment modalities by combining iPSC modeling with novel and innovative gene therapy approaches will pave the way for future applications leading to improved quality of life for many affected individuals and their families.


2021 ◽  
Vol 21 ◽  
pp. 209-236
Author(s):  
Kamakshi Bankoti ◽  
Charles Generotti ◽  
Tiffany Hwa ◽  
Lili Wang ◽  
Bert W. O’Malley ◽  
...  

2021 ◽  
Author(s):  
Moataz Dowaidar

Neurotrophin (NT) cochlear gene therapy might perhaps give a single treatment that might greatly enhance neuronal survival, resulting in CI patients, provided the many challenges described above can be adequately addressed and safety concerns allayed by more animal model investigations. This is particularly crucial for juvenile CI patients, who have to rely on electrical hearing for the remainder of their lives, and whose outcomes are quite different. In addition, NT gene therapy may have the potential to treat patients with noise-induced hearing loss or neural presbyacusis (e.g., age-related cochlear synaptopathy), where primary neuronal loss is a key cause of hearing loss. Animal research into noise-induced hearing loss has shown that even exposures that generate only reversible threshold alterations and no hair cell loss can lead to permanent loss of SGN synapses on hair cells, resulting in functional impairments and ultimately SGN degeneration. Cochlear synapses frequently precede both hair cell loss and threshold increases in human ears, according to current studies. Cochlear synaptopathy is characterized by ears with intact hair cell populations and normal audiograms as "hidden" hearing loss. Many frequent perceptual abnormalities, including speech-in-noise difficulties, tinnitus, and hyperacusis, are likely produced by suppressing affected neurons, which radically alters information processing. Thus, in the future, NT gene therapy may be successful in inducing SGN peripheral axon resprouting and synaptic regeneration into residual (or even regenerated) hair cell populations. We have demonstrated compelling evidence that, in this investigation, BDNF gene therapy can boost SGN survival and enhance peripheral axon maintenance or rerouting. NT-3 has been found in adult animals exposed to acoustic damage to induce synaptic regeneration of these fibers, reconnecting them to hair cells and their ribbon synapses, and restoring hearing function. Combining BDNF and NT-3 gene therapy may be the most effective way to maintain/restore a more normal cochlear neuronal substrate.


2019 ◽  
Vol 28 (R1) ◽  
pp. R65-R79 ◽  
Author(s):  
Ryotaro Omichi ◽  
Seiji B Shibata ◽  
Cynthia C Morton ◽  
Richard J H Smith

Abstract Sensorineural hearing loss (SNHL) is the most common sensory disorder. Its underlying etiologies include a broad spectrum of genetic and environmental factors that can lead to hearing loss that is congenital or late onset, stable or progressive, drug related, noise induced, age related, traumatic or post-infectious. Habilitation options typically focus on amplification using wearable or implantable devices; however exciting new gene-therapy-based strategies to restore and prevent SNHL are actively under investigation. Recent proof-of-principle studies demonstrate the potential therapeutic potential of molecular agents delivered to the inner ear to ameliorate different types of SNHL. Correcting or preventing underlying genetic forms of hearing loss is poised to become a reality. Herein, we review molecular therapies for hearing loss such as gene replacement, antisense oligonucleotides, RNA interference and CRISPR-based gene editing. We discuss delivery methods, techniques and viral vectors employed for inner ear gene therapy and the advancements in this field that are paving the way for basic science research discoveries to transition to clinical trials.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Ai-Ho Liao ◽  
Yi-Lei Hsieh ◽  
Hsin-Chiao Ho ◽  
Hang-Kang Chen ◽  
Yi-Chun Lin ◽  
...  

Gene therapy for sensorineural hearing loss has recently been used to insert genes encoding functional proteins to preserve, protect, or even regenerate hair cells in the inner ear. Our previous study demonstrated a microbubble- (MB-)facilitated ultrasound (US) technique for delivering therapeutic medication to the inner ear. The present study investigated whether MB-US techniques help to enhance the efficiency of gene transfection by means of cationic liposomes on HEI-OC1 auditory cells and whether MBs of different sizes affect such efficiency. Our results demonstrated that the size of MBs was proportional to the concentration of albumin or dextrose. At a constant US power density, using 0.66, 1.32, and 2.83 μm albumin-shelled MBs increased the transfection rate as compared to the control by 30.6%, 54.1%, and 84.7%, respectively; likewise, using 1.39, 2.12, and 3.47 μm albumin-dextrose-shelled MBs increased the transfection rates by 15.9%, 34.3%, and 82.7%, respectively. The results indicate that MB-US is an effective technique to facilitate gene transfer on auditory cellsin vitro. Such size-dependent MB oscillation behavior in the presence of US plays a role in enhancing gene transfer, and by manipulating the concentration of albumin or dextrose, MBs of different sizes can be produced.


JAMA ◽  
2012 ◽  
Vol 308 (9) ◽  
pp. 853
Author(s):  
Tracy Hampton
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document