Platelet Quantification and Growth Factor Analysis from Platelet-Rich Plasma: Implications for Wound Healing

Author(s):  
Barry L. Eppley ◽  
Jennifer E. Woodell ◽  
Joel Higgins
2020 ◽  
Vol 8 ◽  
Author(s):  
Pengcheng Xu ◽  
Yaguang Wu ◽  
Lina Zhou ◽  
Zengjun Yang ◽  
Xiaorong Zhang ◽  
...  

Abstract Background Autologous platelet-rich plasma (PRP) has been suggested to be effective for wound healing. However, evidence for its use in patients with acute and chronic wounds remains insufficient. The aims of this study were to comprehensively examine the effectiveness, synergy and possible mechanism of PRP-mediated improvement of acute skin wound repair. Methods Full-thickness wounds were made on the back of C57/BL6 mice. PRP or saline solution as a control was administered to the wound area. Wound healing rate, local inflammation, angiogenesis, re-epithelialization and collagen deposition were measured at days 3, 5, 7 and 14 after skin injury. The biological character of epidermal stem cells (ESCs), which reflect the potential for re-epithelialization, was further evaluated in vitro and in vivo. Results PRP strongly improved skin wound healing, which was associated with regulation of local inflammation, enhancement of angiogenesis and re-epithelialization. PRP treatment significantly reduced the production of inflammatory cytokines interleukin-17A and interleukin-1β. An increase in the local vessel intensity and enhancement of re-epithelialization were also observed in animals with PRP administration and were associated with enhanced secretion of growth factors such as vascular endothelial growth factor and insulin-like growth factor-1. Moreover, PRP treatment ameliorated the survival and activated the migration and proliferation of primary cultured ESCs, and these effects were accompanied by the differentiation of ESCs into adult cells following the changes of CD49f and keratin 10 and keratin 14. Conclusion PRP improved skin wound healing by modulating inflammation and increasing angiogenesis and re-epithelialization. However, the underlying regulatory mechanism needs to be investigated in the future. Our data provide a preliminary theoretical foundation for the clinical administration of PRP in wound healing and skin regeneration.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Bo Zhou ◽  
Jianan Ren ◽  
Chao Ding ◽  
Yin Wu ◽  
Dong Hu ◽  
...  

Objective.The purposes of our present study were to evaluate the potential of platelet-rich plasma gel to enhance granulation tissue formation after open abdomen and to examine whether the effect was attributable to stimulating rapid neovascularization.Methods.Twenty-four rats underwent colon ascendens stent peritonitis surgery to induce sepsis, followed by intraperitoneal injection of nitrogen to create intra-abdominal hypertension. Four hours later, laparotomies were performed. The rats were randomized into three groups (n=8for each group): control, platelet-poor plasma (PPP), and platelet-rich plasma (PRP) groups. One week after the treatment, granulation tissue formation and angiogenesis were evaluated by histological and laser Doppler analysis.Results.The resultant platelet count in platelet-rich plasma was higher than that of PPP. The concentrations of platelet-derived growth factor BB, transforming growth factorβ-1, and vascular endothelial growth factor in PRP were significantly higher when compared with that of PPP. Myofibroblast count, granulation tissue thickness, vessel numbers, and blood perfusion were increased in PRP group, followed by PPP group, with control being the least.Conclusion.Rapidlyin situforming platelet-rich plasma gel promoted remarkable neovascularization and early wound healing after open abdomen and may lead to novel and effective treatments for open abdominal wounds.


2018 ◽  
Vol 17 (4) ◽  
pp. 236-246
Author(s):  
Saritphat Orrapin ◽  
Kittipan Rekasem

Ischemic wounds are the most severe expression of critical limb ischemia (CLI), and they have been defined clinically as an end stage of peripheral arterial disease. Urgent revascularization is a fundamental part for limb salvage in patients with CLI. However, the risk of revascularization should be weighed against the likelihood of success given a patient’s life-threatening comorbidities. Once the condition of arterial insufficiency is revascularized, wound care is an important aspect to promote the wound healing process and infection control. MOIST concept for wound care is a modern systematic treatment for enhanced wound healing process. Currently, advanced biological therapies are emerging in ischemic wound therapies to restore the wound healing process and involve active biological agents to support the wound healing process. We studied and summarized the different types of available topical biological therapies and their mechanisms on the healing process including platelet-derived growth factor, epidermal growth factor, fibroblast growth factor, and vascular endothelial growth factor, platelet-rich plasma, and honey for local wound care of patient with CLI. Our review suggests that topical platelet-derived growth factor, epidermal growth factor, platelet-rich plasma, and honey are available as well as considered in the ischemic wound healing process enhancement through the MOIST concept. In conclusion, biologic wound dressing or topical agent therapy may improve the wound healing process, increase limb salvage, is inexpensive, and provides potential safety with nontoxic low-risk therapy in patients with an ischemic wound. Thus, local wound care by biological dressing should be added in adjuvant treatment for ischemic wound patients. However, further randomized studies are needed to support efficacy and long-term outcomes of these biological dressing in patients with ischemic wound.


2021 ◽  
pp. 1-12
Author(s):  
Gallant Kar Lun Chan ◽  
Maggie Suisui Guo ◽  
Diana Kun Dai ◽  
Queenie Wing Sze Lai ◽  
Kelly Wing Chi Fung ◽  
...  

<b><i>Introduction:</i></b> Inspired by application of platelet-rich plasma (PRP) in skin treatment during injuries, an extracting method was developed here to recover high amounts of cytokines and growth factors from PRP; this prepared extract was named as self-growth colony (SGC). <b><i>Methods:</i></b> In optimization of SGC preparation, various parameters were tested, for example, centrifugation force, freeze-thaw, sonication, and inclusion of calcium chelator. The amounts of cytokines and growth factors, including platelet factor 4, β-thromboglobulin, epidermal growth factor, vascular endothelial growth factor, platelet-derived growth factor, were measured by ELISA assay. <b><i>Results:</i></b> By comparing to PRP, the prepared SGC contained a significant higher amount of measured growth factors. In addition, the degradation of growth factors within SGC during the storage was calibrated, which showed better stability as compared to that of PRP preparation. Having possible application in skin care, the optimized SGC was chemically standardized by using the enrichment of growth factors. Application of SGC in cultured keratinocytes stimulated the wound healing of injured cultures. In line to this notion, SGC was applied onto human skin, and thereafter the robust improvement of skin properties was revealed. <b><i>Conclusions:</i></b> The potential application of SGC in treating skin rejuvenation and ageing, as well as its elaborated application for medical purpose, that is, wound healing, was illustrated.


2019 ◽  
Vol 20 (2) ◽  
pp. 288 ◽  
Author(s):  
Roos Marck ◽  
Kim Gardien ◽  
Marcel Vlig ◽  
Roelf Breederveld ◽  
Esther Middelkoop

Platelet rich plasma (PRP) is blood plasma with a platelet concentration above baseline. When activated, PRP releases growth factors involved in all stages of wound healing, potentially boosting the healing process. To expand our knowledge of the effectiveness of PRP, it is crucial to know the content and composition of PRP products. In this study, growth factor quantification measurements of PRP from burn patients and gender- and age-matched controls were performed. The PRP of burn patients showed levels of growth factors comparable to those of the PRP of healthy volunteers. Considerable intra-individual variation in growth factor content was found. However, a correlation was found between the platelet count of the PRP and most of the growth factors measured.


2019 ◽  
Vol 10 (2) ◽  
pp. 22 ◽  
Author(s):  
Ektoras Hadjipanayi ◽  
Philipp Moog ◽  
Sanjar Bekeran ◽  
Katharina Kirchhoff ◽  
Andrei Berezhnoi ◽  
...  

Blood-derived growth factor preparations have long been employed to improve perfusion and aid tissue repair. Among these, platelet-rich plasma (PRP)-based therapies have seen the widest application, albeit with mixed clinical results to date. Hypoxia-preconditioned blood products present an alternative to PRP, by comprising the complete wound healing factor-cascade, i.e., hypoxia-induced peripheral blood cell signaling, in addition to platelet-derived factors. This study set out to characterize the preparation of hypoxia preconditioned serum (HPS), and assess the utility of HPS–fibrin hydrogels as vehicles for controlled factor delivery. Our findings demonstrate the positive influence of hypoxic incubation on HPS angiogenic potential, and the individual variability of HPS angiogenic factor concentration. HPS–fibrin hydrogels can rapidly retain HPS factor proteins and gradually release them over time, while both functions appear to depend on the fibrin matrix mass. This offers a means of controlling factor retention/release, through adjustment of HPS fibrinogen concentration, thus allowing modulation of cellular angiogenic responses in a growth factor dose-dependent manner. This study provides the first evidence that HPS–fibrin hydrogels could constitute a new generation of autologous/bioactive injectable compositions that provide biochemical and biomaterial signals analogous to those mediating physiological wound healing. This therefore establishes a rational foundation for their application towards biomimetic tissue regeneration.


2021 ◽  
Vol 12 ◽  
pp. 204173142199975
Author(s):  
Jihyun Kim ◽  
Kyoung-Mi Lee ◽  
Seung Hwan Han ◽  
Eun Ae Ko ◽  
Dong Suk Yoon ◽  
...  

Patients with diabetes experience impaired growth factor production such as epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), and they are reportedly involved in wound healing processes. Here, we report dual growth factor-loaded hyaluronate collagen dressing (Dual-HCD) matrix, using different ratios of the concentration of stabilized growth factors—stabilized-EGF (S-EGF) and stabilized-bFGF (S-bFGF). At first, the optimal concentration ratio of S-EGF to S-bFGF in the Dual-HCD matrix is determined to be 1:2 in type I diabetic mice. This Dual-HCD matrix does not cause cytotoxicity and can be used in vivo. The wound-healing effect of this matrix is confirmed in type II diabetic mice. Dual HCD enhances angiogenesis which promotes wound healing and thus, it shows a significantly greater synergistic effect than the HCD matrix loaded with a single growth factor. Overall, we conclude that the Dual-HCD matrix represents an effective therapeutic agent for impaired diabetic wound healing.


2021 ◽  
Vol 22 (12) ◽  
pp. 6267
Author(s):  
Meng-Jin Lin ◽  
Mei-Chun Lu ◽  
Hwan-You Chang

The goals of this study are to develop a high purity patented silk fibroin (SF) film and test its suitability to be used as a slow-release delivery for insulin-like growth factor-1 (IGF-1). The release rate of the SF film delivering IGF-1 followed zero-order kinetics as determined via the Ritger and Peppas equation. The release rate constant was identified as 0.11, 0.23, and 0.09% h−1 at 37 °C for SF films loaded with 0.65, 6.5, and 65 pmol IGF-1, respectively. More importantly, the IGF-1 activity was preserved for more than 30 days when complexed with the SF film. We show that the IGF-1-loaded SF films significantly accelerated wound healing in vitro (BALB/3T3) and in vivo (diabetic mice), compared with wounds treated with free IGF-1 and an IGF-1-loaded hydrocolloid dressing. This was evidenced by a six-fold increase in the granulation tissue area in the IGF-1-loaded SF film treatment group compared to that of the PBS control group. Western blotting analysis also demonstrated that IGF-1 receptor (IGF1R) phosphorylation in diabetic wounds increased more significantly in the IGF-1-loaded SF films group than in other experimental groups. Our results suggest that IGF-1 sustained release from SF films promotes wound healing through continuously activating the IGF1R pathway, leading to the enhancement of both wound re-epithelialization and granulation tissue formation in diabetic mice. Collectively, these data indicate that SF films have considerable potential to be used as a wound dressing material for long-term IGF-1 delivery for diabetic wound therapy.


Sign in / Sign up

Export Citation Format

Share Document