biological dressing
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 11)

H-INDEX

11
(FIVE YEARS 1)

2022 ◽  
Vol 10 (1S) ◽  
pp. 5-6
Author(s):  
Martin Hladík ◽  
Serhiy Forostyak ◽  
Břetislav Lipový

2021 ◽  
Vol 10 (8) ◽  
pp. e24010817146
Author(s):  
Gustavo Gonçalves do Prado Manfredi ◽  
Matheus Volz Cardoso ◽  
Vitor de Toledo Stuani ◽  
Rafael Ferreira ◽  
Mariana Schutzer Ragghianti Zangrando ◽  
...  

Recently, the use of type I collagen obtained from Nile Tilapia (Oreochromis niloticus) was proposed for the treatment of second and third-degree burning lesions and diabetic ulcers due to its occlusive and healing properties. The aim of this report is to describe the use of Nile tilapia skin as an occlusive barrier to protect palatal wounds after the removal of free autogenous soft tissue grafts. Two patients with a deficiency in the height of keratinized mucosa were indicated for treatment with free gingival grafts. The palatal donor area was covered with a Nile tilapia skin, stabilized by sutures. Seven days after surgery, patients returned for post-operative care. Patients’ reported outcomes were investigated by the use of a visual analogue scale and included pain, discomfort, impact on chewing and speaking. Analgesics consumption was also recorded. Standardized photographs were obtained to monitor wound healing. Patients were followed up for 30 days. Patients reported reduced pain levels, with low consumption of analgesics during the first week after surgery. No discomfort or difficulty in chewing or speaking was reported. No complications such as hemorrhage or edema were observed. These findings suggest that the Nile Tilapia skin may be an interesting alternative as an occlusive biological dressing in palatal wounds harvest of free gingival grafts.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amnah Asiri ◽  
Syafiqah Saidin ◽  
Mohd Helmi Sani ◽  
Rania Hussien Al-Ashwal

AbstractIn this study, single, mix, multilayer Polyvinyl alcohol (PVA) electrospun nanofibers with epidermal growth factor (EGF) and fibroblast growth factor (FGF) were fabricated and characterized as a biological wound dressing scaffolds. The biological activities of the synthesized scaffolds have been verified by in vitro and in vivo studies. The chemical composition finding showed that the identified functional units within the produced nanofibers (O–H and N–H bonds) are attributed to both growth factors (GFs) in the PVA nanofiber membranes. Electrospun nanofibers' morphological features showed long protrusion and smooth morphology without beads and sprayed with an average range of 198–286 nm fiber diameter. The fiber diameters decrement and the improvement in wettability and surface roughness were recorded after GFs incorporated within the PVA Nanofibers, which indicated potential good adoption as biological dressing scaffolds due to the identified mechanical properties (Young’s modulus) in between 18 and 20 MPa. The MTT assay indicated that the growth factor release from the PVA nanofibers has stimulated cell proliferation and promoted cell viability. In the cell attachment study, the GFs incorporated PVA nanofibers stimulated cell proliferation and adhered better than the PVA control sample and presented no cytotoxic effect. The in vivo studies showed that compared to the control and single PVA-GFs nanofiber, the mix and multilayer scaffolds gave a much more wound reduction at day 7 with better wound repair at day 14–21, which indicated to enhancing tissue regeneration, thus, could be a projected as a suitable burn wound dressing scaffold.


2020 ◽  
Vol 7 ◽  
Author(s):  
Ahmed Ibrahim ◽  
Dalia Hassan ◽  
Noura Kelany ◽  
Saber Kotb ◽  
Mahmoud Soliman

Tilapia fish skin has demonstrated promise as a stable and practical biological dressing to be used in wound and burn management. However, the appropriate sterilization technique of the Tilapia fish skin is crucial before its clinical application. The standard sterilization technique must eliminate harmful pathogens but maintain the structural and biochemical properties that could compromise the dressing function. This study investigated and compared the efficiency of three sterilizing agents; chlorhexidine gluconate 4% (CHG), povidone iodine 10% (PVP-I), and silver nanoparticles (25 μg/mL) (AgNPs), at three different times (5, 10, and 15 min) on Tilapia fish skin based on the microbial count, histological and collagen properties. Among the sterilization procedures, AgNPs showed rapid and complete antimicrobial activity, with a 100% reduction in microbial growth of the fish skin throughout the treated times. Furthermore, AgNPs did not impair the cellular structure or collagen fibers content of the fish skin. However, CHG and PVP-I caused alterations in the collagen content. This study demonstrated that the AgNPs treatment of Tilapia fish skin provided sterile skin while preserving the histological properties and structural integrity. These findings provide an efficient and quick sterilization method suitable for Tilapia fish skin that could be adopted as a biological dressing.


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Ahmed Ibrahim ◽  
Mahmoud Soliman ◽  
Saber Kotb ◽  
Magda M. Ali

Abstract Background The use of biological dressings has recently emerged in the management of burns and wounds. The aim of the present study was to evaluate the Nile tilapia skin as a biological dressing for full-thickness cutaneous metacarpal wounds in donkeys. The study was conducted on nine clinically healthy donkeys (n = 9). Here, fish skin dressings were obtained from fresh Nile tilapia (Oreochromis niloticus and sterilized by immersion in silver nanoparticles (AgNPs) solution for 5 min, with no change in collagen content. Bilateral, circular full-thickness excisional skin wounds (2 cm in diameter) were created on the dorsal aspect of the mid-metacarpals of each donkey. Wounds on the right metacarpals (treated wounds, n = 9) were dressed with sterile fish skins, while wounds on the left metacarpals (control wounds, n = 9) were dressed with sterile non-adherent dressing pads without any topical applications. Wound dressings were changed weekly. Wounds were evaluated microbiologically, grossly, and histologically on days 7, 14, and 21 post-wound inductions. Results Fish skin-dressed wounds showed a significant (P < 0.0001) reduction in microbial counts (Total viable bacterial count, Staphylococcal count, and Coliform count), a significant (P < 0.0001) decrease in the wound size, and a significant reduction (P < 0.0001) in the epithelial gap compared to the untreated wounds. No frequent dressing changes were needed. Conclusions Fish skin dressing accelerated the wound healing process and efficiently inhibited the local microbial activity and exuberant granulation tissue formation suggesting its reliable and promising application for metacarpal wounds of donkeys.


2020 ◽  
Author(s):  
Ahmed Ibrahim ◽  
Dalia Hassan ◽  
Noura Kelany ◽  
Saber Kotb ◽  
Mahmoud Soliman

Abstract Background Tilapia fish skin has demonstrated promise as a stable and practical biological dressing to be used in wound and burn management. However, the appropriate sterilization technique of the Tilapia fish skin is crucial before its clinical application. The standard sterilization technique must eliminate harmful pathogens but maintain the structural and biochemical properties that could compromise the dressing function. This study investigated and compared the efficiency of three sterilizing agents; chlorhexidine gluconate 4% (CHG), povidone iodine 10% (PVP-I), and silver nanoparticles (25 µg/mL) (AgNPs), at three different times (5, 10, and 15 min) on Tilapia fish skin based on the microbial count, histological and collagen properties. Results Among the sterilization procedures, AgNPs showed rapid and complete antimicrobial activity, with a 100% reduction in microbial growth of the fish skin throughout the treated times. Furthermore, AgNPs did not impair the cellular structure or collagen fibers content of the fish skin. However, CHG and PVP-I caused alterations in the collagen content. Conclusion This study demonstrated that the AgNPs treatment of Tilapia fish skin provided sterile skin while preserving the histological properties and structural integrity. These findings provide an efficient and quick sterilization method suitable for Tilapia fish skin that could be adopted as a biological dressing.


2020 ◽  
Vol 40 (3) ◽  
pp. 135-137 ◽  
Author(s):  
Miriam Alonso-Carpio ◽  
Alberto Sánchez-García ◽  
Ana Trapero ◽  
María D Pérez-del Caz

2020 ◽  
Author(s):  
John M. Byrne IV ◽  
Ari Stone ◽  
Margaret Tallmadge ◽  
Krista Brackman ◽  
Bhavani Kura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document