scholarly journals ISLET ISOGRAFT TRANSPLANTATION IMPROVES INSULIN SENSITIVITY IN TYPE 2 DIABETES MICE INDUCED BY HIGH FAT DIET COMBINED WITH LOW-DOSE STREPTOZOTOCIN

2020 ◽  
Vol 104 (S3) ◽  
pp. S564-S564
Author(s):  
Seong Jun Lim ◽  
Youngmin Ko ◽  
Monica Young Choi ◽  
Hey Rim Jung ◽  
Mi Joung Kim ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Kira V. Derkach ◽  
Vera M. Bondareva ◽  
Oxana V. Chistyakova ◽  
Lev M. Berstein ◽  
Alexander O. Shpakov

In the last years the treatment of type 2 diabetes mellitus (DM2) was carried out using regulators of the brain signaling systems. In DM2 the level of the brain serotonin is reduced. So far, the effect of the increase of the brain serotonin level on DM2-induced metabolic and hormonal abnormalities has been studied scarcely. The present work was undertaken with the aim of filling this gap. DM2 was induced in male rats by 150-day high-fat diet and the treatment with low dose of streptozotocin (25 mg/kg) on the 70th day of experiment. From the 90th day, diabetic rats received for two months intranasal serotonin (IS) at a daily dose of 20 μg/rat. The IS treatment of diabetic rats decreased the body weight, and improved glucose tolerance, insulin-induced glucose utilization, and lipid metabolism. Besides, it restored hormonal regulation of adenylyl cyclase (AC) activity in the hypothalamus and normalized AC stimulation byβ-adrenergic agonists in the myocardium. In nondiabetic rats the same treatment induced metabolic and hormonal alterations, some of which were similar to those in DM2 but expressed to a lesser extent. In conclusion, the elevation of the brain serotonin level may be regarded as an effective approach to treat DM2 and its complications.


2013 ◽  
Vol 12 (1) ◽  
pp. 136 ◽  
Author(s):  
Latt S Mansor ◽  
Eileen R Gonzalez ◽  
Mark A Cole ◽  
Damian J Tyler ◽  
Jessica H Beeson ◽  
...  

2008 ◽  
Vol 2008 ◽  
pp. 1-9 ◽  
Author(s):  
Ming Zhang ◽  
Xiao-Yan Lv ◽  
Jing Li ◽  
Zhi-Gang Xu ◽  
Li Chen

Aim. Based on the previously established method, we developed a better and stable animal model of type 2 diabetes mellitus by high-fat diet combined with multiple low-dose STZ injections. Meanwhile, this new model was used to evaluate the antidiabetic effect of berberine.Method. Wistar male rats fed with regular chow for 4 weeks received vehicle (control groups), rats fed with high-fat diet for 4 weeks received different amounts of STZ once or twice by intraperitoneal injection (diabetic model groups), and diabetic rats were treated with berberine (100 mg/kg, berberine treatment group). Intraperitoneal glucose tolerance test and insulin tolerance test were carried out. Moreover, fasting blood glucose, fasting insulin, total cholesterol, and triglyceride were measured to evaluate the dynamic blood sugar and lipid metabolism.Result. The highest successful rate (100%) was observed in rats treated with a single injection of 45 mg/kg STZ, but the plasma insulin level of this particular group was significantly decreased, and ISI has no difference compared to control group. The successful rate of 30 mg/kg STZ twice injection group was significantly high (85%) and the rats in this group presented a typical characteristic of T2DM as insulin resistance, hyperglycemia, and blood lipid disorder. All these symptoms observed in the 30 mg/kg STZ twice injection group were recovered by the treatment of berberine.Conclusion. Together, these results indicated that high-fat diet combined with multiple low doses of STZ (30 mg/kg at weekly intervals for 2 weeks) proved to be a better way for developing a stable animal model of type 2 diabetes, and this new model may be suitable for pharmaceutical screening.


2015 ◽  
Vol 5 ◽  
pp. S159-S165 ◽  
Author(s):  
Emmanuel Anyachukwu Irondi ◽  
Ganiyu Oboh ◽  
Afolabi Akintunde Akindahunsi ◽  
Aline Augusti Boligon ◽  
Margareth Linde Athayde

2021 ◽  
Vol 10 (3) ◽  
pp. 331-338
Author(s):  
Pratibha Nadig ◽  
Meharban Asanaliyar ◽  
Kevin Manohar Salis

Introduction: The principal mechanism responsible for reducing blood glucose is through insulin-stimulated glucose transport into skeletal muscle. The transporter protein that mediates this uptake is GLUT-4. A defect in this step is associated with reduced glucose utilization in muscle and adipose tissue, as observed in insulin-resistant type-2 diabetes mellitus (T2DM) patients. This study aimed to develop an experimental T2DM model and evaluate altered glucose transporter type 4 (GLUT-4) levels as a biomarker of insulin resistance. Antidiabetic activities of Syzygium cumini hydro-ethanolic seed extracts (SCE) were also evaluated. Methods: Adult male Wistar albino rats were fed a high-fat diet for 12 weeks and dosed intraperitoneally with streptozotocin (35 mg/kg). After treatment for 21 days, all investigations were done. The homeostasis model of assessment (HOMA) was used for the calculation of insulin resistance (HOMA-IR) and beta-cell function (HOMA-B) index. Diaphragm muscle and retroperitoneal fat were collected for real-time polymerase chain reaction (RT-PCR) studies. Results: A significant increase in fasting blood glucose, HOMA-IR, and serum lipids, and a decrease in serum insulin and HOMA-B were observed in the diabetic group, effects that reversed following pioglitazone and SCE treatment. The diabetic group showed a downregulation of GLUT-4 expression in skeletal muscle while an increase was observed in adipose tissue. Conclusion: A high-fat diet and low dose streptozotocin-induced experimental T2DM model of insulin resistance was developed to screen novel insulin sensitizers. Data generated demonstrated that altered GLUT-4 levels could be used as a biomarker of insulin resistance. Antidiabetic activity of S. cumini hydro-ethanolic seed extract was also confirmed in this study.


Sign in / Sign up

Export Citation Format

Share Document