Assessment of Cerebral Autoregulation Patterns with Near-infrared Spectroscopy during Pharmacological-induced Pressure Changes

2015 ◽  
Vol 123 (2) ◽  
pp. 327-335 ◽  
Author(s):  
Annelies T. Moerman ◽  
Valerie M. Vanbiervliet ◽  
Astrid Van Wesemael ◽  
Stefaan M. Bouchez ◽  
Patrick F. Wouters ◽  
...  

Abstract Background: Previous work has demonstrated paradoxical increases in cerebral oxygen saturation (ScO2) as blood pressure decreases and paradoxical decreases in ScO2 as blood pressure increases. It has been suggested that these paradoxical responses indicate a functional cerebral autoregulation mechanism. Accordingly, the authors hypothesized that if this suggestion is correct, paradoxical responses will occur exclusively in patients with intact cerebral autoregulation. Methods: Thirty-four patients undergoing elective cardiac surgery were included. Cerebral autoregulation was assessed with the near-infrared spectroscopy–derived cerebral oximetry index (COx), computed by calculating the Spearman correlation coefficient between mean arterial pressure and ScO2. COx less than 0.30 was previously defined as functional autoregulation. During cardiopulmonary bypass, 20% change in blood pressure was accomplished with the use of nitroprusside for decreasing pressure and phenylephrine for increasing pressure. Effects on COx were assessed. Data were analyzed using two-way ANOVA, Kruskal–Wallis test, and Wilcoxon and Mann–Whitney U test. Results: Sixty-five percent of patients had a baseline COx less than 0.30, indicating functional baseline autoregulation. In 50% of these patients (n = 10), COx became highly negative after vasoactive drug administration (from −0.04 [−0.25 to 0.16] to −0.63 [−0.83 to −0.26] after administration of phenylephrine, and from −0.05 [−0.19 to 0.17] to −0.55 [−0.94 to −0.35] after administration of nitroprusside). A negative COx implies a decrease in ScO2 with increase in pressure and, conversely, an increase in ScO2 with decrease in pressure. Conclusions: In this study, paradoxical changes in ScO2 after pharmacological-induced pressure changes occurred exclusively in patients with intact cerebral autoregulation, corroborating the hypothesis that these paradoxical responses might be attributable to a functional cerebral autoregulation.

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1615 ◽  
Author(s):  
Anneliese Moerman ◽  
Stefan De Hert

In recent years, the feasibility of near-infrared spectroscopy to continuously assess cerebral autoregulation has gained increasing interest. By plotting cerebral oxygen saturation over blood pressure, clinicians can generate an index of autoregulation: the cerebral oximetry index (COx). Successful integration of this monitoring ability in daily critical care may allow clinicians to tailor blood pressure management to the individual patient’s need and might prove to be a major step forward in terms of patient outcome.


2021 ◽  
Vol 17 (1) ◽  
pp. 44-49
Author(s):  
A.О. Vlasov

Background. In the past decade, near-infrared spectroscopy has gained popularity in neonatal wards. Taking into account modern international experience, the presented work assesses the features of cerebral oximetry in children with surgical congenital malformations under various types of combined anesthesia. The purpose of the study was to assess the state of cerebral oxygenation in newborns and infants with congenital malformations in various types of anesthetic support. Materials and methods. A retrospective study included 150 newborns and infants with surgical congenital malformations, depending on the anesthesia (inhalation + regional anesthesia; inhalation + intravenous and total intravenous anesthesia). The parameters of cerebral oximetry were analyzed in comparison with peripheral saturation, blood pressure, partial pressure of CO2, O2 in the blood, and pH. Results. The minimum index of cerebral oximetry was observed in the left brain hemisphere of children in group I — 50.57 ± 16.66 that may be an unfavorable prognostic factor for further recovery and influence on the cognitive functions of the brain. One hour after the operation, the children of the first group, who received combined anesthesia with sevorane and regional anesthesia, showed the worse indicators of cerebral oxi­metry compared to groups II and III (rSO2 of the right hemisphere in the first group — 56.84 ± 12.27, rSO2 of the left hemisphere in the first group — 57.53 ± 13.32, p = 0.0001; 0.0028), while the differences in this indicator between groups II and III were not found (p = 0.4167; 0.4029). Conclusions. Near-infrared spectroscopy has proven to be a simple, feasible and useful method for monitoring the oxygen saturation of the brain. When choosing a combined anesthesia by inhalation and regional anesthesia in child­ren with congenital malformations for surgical treatment, cerebral oxyge­nation should be more carefully monitored with additional control of peripheral saturation, blood pressure, partial pressure of CO2, O2 in the blood and pH.


2011 ◽  
Vol 197 (2) ◽  
pp. 283-288 ◽  
Author(s):  
Ludovico Minati ◽  
Inge U. Kress ◽  
Elisa Visani ◽  
Nick Medford ◽  
Hugo D. Critchley

Author(s):  
Arjen Mol ◽  
Carel G. M. Meskers ◽  
Marit L. Sanders ◽  
Martin Müller ◽  
Andrea B. Maier ◽  
...  

Abstract Purpose Cerebral autoregulation (CA) aims to attenuate the effects of blood pressure variation on cerebral blood flow. This study assessed the criterion validity of CA derived from near-infrared spectroscopy (NIRS) as an alternative for Transcranial Doppler (TCD). Methods Measurements of continuous blood pressure (BP), oxygenated hemoglobin (O2Hb) using NIRS and cerebral blood flow velocity (CBFV) using TCD (gold standard) were performed in 82 controls, 27 patients with hypertension and 94 cognitively impaired patients during supine rest (all individuals) and repeated sit to stand transitions (cognitively impaired patients). The BP-CBFV and BP-O2Hb transfer function phase shifts (TFφ) were computed as CA measures. Spearman correlations (ρ) and Bland Altman limits of agreement (BAloa) between NIRS- and TCD-derived CA measures were computed. BAloa separation < 50° was considered a high absolute agreement. Results NIRS- and TCD-derived CA estimates were significantly correlated during supine rest (ρ = 0.22–0.30, N = 111–120) and repeated sit-to-stand transitions (ρ = 0.46–0.61, N = 19–32). BAloa separation ranged between 87° and 112° (supine rest) and 65°–77° (repeated sit to stand transitions). Conclusion Criterion validity of NIRS-derived CA measures allows for comparison between groups but was insufficient for clinical application in individuals.


Sign in / Sign up

Export Citation Format

Share Document