scholarly journals Anesthetic Propofol Causes Glycogen Synthase Kinase-3β-regulated Lysosomal/Mitochondrial Apoptosis in Macrophages

2012 ◽  
Vol 116 (4) ◽  
pp. 868-881 ◽  
Author(s):  
Chung-Hsi Hsing ◽  
Yu-Hong Chen ◽  
Chia-Ling Chen ◽  
Wei-Ching Huang ◽  
Ming-Chung Lin ◽  
...  

Background Overdose propofol treatment with a prolong time causes injury to multiple cell types; however, its molecular mechanisms remain unclear. Activation of glycogen synthase kinase (GSK)-3β is proapoptotic under death stimuli. The authors therefore hypothesize that propofol overdose induces macrophage apoptosis through GSK-3β. Methods Phagocytic analysis by uptake of Staphylococcus aureus showed the effects of propofol overdose on murine macrophages RAW264.7 and BV2 and primary human neutrophils in vitro. The authors further investigated cell apoptosis in vitro and in vivo, lysosomal membrane permeabilization, and the loss of mitochondrial transmembrane potential (MTP) by propidium iodide, annexin V, acridine orange, and rhodamine 123 staining, respectively. Protein analysis identified activation of apoptotic signals, and pharmacologic inhibition and genetic knockdown using lentiviral-based short hairpin RNA were further used to clarify their roles. Results A high dose of propofol caused phagocytic inhibition and apoptosis in vitro for 24 h (25 μg/ml, in triplicate) and in vivo for 6 h (10 mg/kg/h, n = 5 for each group). Propofol induced lysosomal membrane permeabilization and MTP loss while stabilizing MTP and inhibiting caspase protected cells from mitochondrial apoptosis. Lysosomal cathepsin B was required for propofol-induced lysosomal membrane permeabilization, MTP loss, and apoptosis. Propofol decreased antiapoptotic Bcl-2 family proteins and then caused proapoptotic Bcl-2-associated X protein (Bax) activation. Propofol-activated GSK-3β and inhibiting GSK-3β prevented Mcl-1 destabilization, MTP loss, and lysosomal/mitochondrial apoptosis. Forced expression of Mcl-1 prevented the apoptotic effects of propofol. Decreased Akt was important for GSK-3β activation caused by propofol. Conclusions These results suggest an essential role of GSK-3β in propofol-induced lysosomal/mitochondrial apoptosis.

Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 610
Author(s):  
Robin Park ◽  
Andrew L. Coveler ◽  
Ludimila Cavalcante ◽  
Anwaar Saeed

Glycogen synthase kinase-3 beta is a ubiquitously and constitutively expressed molecule with pleiotropic function. It acts as a protooncogene in the development of several solid tumors including pancreatic cancer through its involvement in various cellular processes including cell proliferation, survival, invasion and metastasis, as well as autophagy. Furthermore, the level of aberrant glycogen synthase kinase-3 beta expression in the nucleus is inversely correlated with tumor differentiation and survival in both in vitro and in vivo models of pancreatic cancer. Small molecule inhibitors of glycogen synthase kinase-3 beta have demonstrated therapeutic potential in pre-clinical models and are currently being evaluated in early phase clinical trials involving pancreatic cancer patients with interim results showing favorable results. Moreover, recent studies support a rationale for the combination of glycogen synthase kinase-3 beta inhibitors with chemotherapy and immunotherapy, warranting the evaluation of novel combination regimens in the future.


RSC Advances ◽  
2016 ◽  
Vol 6 (49) ◽  
pp. 43345-43355 ◽  
Author(s):  
Mushtaq A. Tantray ◽  
Imran Khan ◽  
Hinna Hamid ◽  
Mohammad Sarwar Alam ◽  
Abhijeet Dhulap ◽  
...  

Synthesized benzimidazole based 1,3,4-oxadiazole-1,2,3-triazole conjugates were found to inhibit GSK-3β activityin vitroand exhibit antidepressant-like activity inin vivostudies.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5391
Author(s):  
Zheng Liu ◽  
Ming Bian ◽  
Qian-Qian Ma ◽  
Zhuo Zhang ◽  
Huan-Huan Du ◽  
...  

A series of novel synthetic substituted benzo[d]oxazole-based derivatives (5a–5v) exerted neuroprotective effects on β-amyloid (Aβ)-induced PC12 cells as a potential approach for the treatment of Alzheimer’s disease (AD). In vitro studies show that most of the synthesized compounds were potent in reducing the neurotoxicity of Aβ25-35-induced PC12 cells at 5 μg/mL. We found that compound 5c was non-neurotoxic at 30 μg/mL and significantly increased the viability of Aβ25-35-induced PC12 cells at 1.25, 2.5 and 5 μg/mL. Western blot analysis showed that compound 5c promoted the phosphorylation of Akt and glycogen synthase kinase (GSK-3β) and decreased the expression of nuclear factor-κB (NF-κB) in Aβ25-35-induced PC12 cells. In addition, our findings demonstrated that compound 5c protected PC12 cells from Aβ25-35-induced apoptosis and reduced the hyperphosphorylation of tau protein, and decreased the expression of receptor for AGE (RAGE), β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1), inducible nitric oxide synthase (iNOS) and Bcl-2-associated X protein/B-cell lymphoma 2 (Bax/Bcl-2) via Akt/GSK-3β/NF-κB signaling pathway. In vivo studies suggest that compound 5c shows less toxicity than donepezil in the heart and nervous system of zebrafish.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Jikui Sun ◽  
Quanfeng Ma ◽  
Banban Li ◽  
Chen Wang ◽  
Lidong Mo ◽  
...  

Abstract Accumulating evidence indicates that the dysregulation of the miRNAs/mRNA-mediated carcinogenic signaling pathway network is intimately involved in glioma initiation and progression. In the present study, by performing experiments and bioinformatics analysis, we found that RPN2 was markedly elevated in glioma specimens compared with normal controls, and its upregulation was significantly linked to WHO grade and poor prognosis. Knockdown of RPN2 inhibited tumor proliferation and invasion, promoted apoptosis, and enhanced temozolomide (TMZ) sensitivity in vitro and in vivo. Mechanistic investigation revealed that RPN2 deletion repressed β-catenin/Tcf-4 transcription activity partly through functional activation of glycogen synthase kinase-3β (GSK-3β). Furthermore, we showed that RPN2 is a direct functional target of miR-181c. Ectopic miR-181c expression suppressed β-catenin/Tcf-4 activity, while restoration of RPN2 partly reversed this inhibitory effect mediated by miR-181c, implying a molecular mechanism in which TMZ sensitivity is mediated by miR-181c. Taken together, our data revealed a new miR-181c/RPN2/wnt/β-catenin signaling axis that plays significant roles in glioma tumorigenesis and TMZ resistance, and it represents a potential therapeutic target, especially in GBM.


2006 ◽  
Vol 26 (15) ◽  
pp. 5784-5796 ◽  
Author(s):  
Alexander Hergovich ◽  
Joanna Lisztwan ◽  
Claudio R. Thoma ◽  
Christiane Wirbelauer ◽  
Robert E. Barry ◽  
...  

ABSTRACT Inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene is linked to the development of tumors of the eyes, kidneys, and central nervous system. VHL encodes two gene products, pVHL30 and pVHL19, of which one, pVHL30, associates functionally with microtubules (MTs) to regulate their stability. Here we report that pVHL30 is a novel substrate of glycogen synthase kinase 3 (GSK3) in vitro and in vivo. Phosphorylation of pVHL on serine 68 (S68) by GSK3 requires a priming phosphorylation event at serine 72 (S72) mediated in vitro by casein kinase I. Functional analysis of pVHL species carrying nonphosphorylatable or phosphomimicking mutations at S68 and/or S72 reveals a central role for these phosphorylation events in the regulation of pVHL's MT stabilization (but not binding) activity. Taken together, our results identify pVHL as a novel priming-dependent substrate of GSK3 and suggest a dual-kinase mechanism in the control of pVHL's MT stabilization function. Since GSK3 is a component of multiple signaling pathways that are altered in human cancer, our results further imply that normal operation of the GSK3-pVHL axis may be a critical aspect of pVHL's tumor suppressor mechanism through the regulation of MT dynamics.


2012 ◽  
Vol 3 (11) ◽  
pp. 963-971 ◽  
Author(s):  
Jose A. Morales-Garcia ◽  
Rosario Luna-Medina ◽  
Sandra Alonso-Gil ◽  
Marina Sanz-SanCristobal ◽  
Valle Palomo ◽  
...  

2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
YI TAN ◽  
Xiaoqing Yan ◽  
Shanshan Zhou ◽  
Yong Li ◽  
Yan Li ◽  
...  

Cardiac insulin resistance is a key pathogenic factor for diabetic cardiomyopathy, but its mechanism remains largely unclear. Here we demonstrated that diabetes significantly inhibited cardiac Akt phosphorylation from 2 weeks to 2 months in wide-type (WT) mice, but not in cardiac-specific metallothionein-transgenic (MT-TG) mice. Cardiac Akt2 expression and phosphorylation was decreased and insulin-induced cardiac Akt2 and GSK-3β phosphorylation and glycogen synthase dephosphorylation were also decreased in WT, but not MT-TG, diabetic mice. Deletion of the Akt2 gene either in vitro H9c2 cells or in vivo significantly impaired cardiac glucose metabolic signaling. In addition, diabetes significantly increased cardiac Akt negative regulator tribbles (TRB)3 expression only in WT mice, suggesting the possible contribution of MT inhibition of diabetic up-regulation of TRB3 to Akt2 function preservation. Cardiac H9c2 cells with and without forced MT-overexpression (MT-H9c2) were treated with tert-butyl hydroperoxide (tBHP), which significantly reduced Akt2 phosphorylation in both basal and insulin-stimulating conditions only in H9c2 cells. Silencing TRB3 expression with SiRNA completely prevented tBHP’s inhibition of insulin-stimulated Akt2 phosphorylation in H9c2 cells, while overexpression of TRB3 in MT-H9c2 cells completely abolished MT preservation of insulin-stimulated Akt2 phosphorylation. Forced-overexpression of TRB3 by adenovirus-mediated gene delivery in MT-TG hearts also abolished MT’s preservation of cardiac insulin signaling and prevention of diabetic cardiomyopathy. These results suggest that diabetes-attenuated cardiac Akt2 function via up-regulating TRB3 plays a critical role in diabetic inhibition of insulin signaling in the heart. MT preserved cardiac Akt2-mediated insulin signaling by inhibiting TRB3, leading to the prevention of diabetic cardiomyopathy.


Sign in / Sign up

Export Citation Format

Share Document