scholarly journals Role of periostin in skin wound healing and pathologic scar formation

2020 ◽  
Vol 133 (18) ◽  
pp. 2236-2238
Author(s):  
Shi-Lu Yin ◽  
Ze-Lian Qin ◽  
Xin Yang
Author(s):  
Chen-Chen Zhao ◽  
Lian Zhu ◽  
Zheng Wu ◽  
Rui Yang ◽  
Na Xu ◽  
...  

Abstract Scar formation seriously affects the repair of damaged skin especially in adults and the excessive inflammation has been considered as the reason. The self-assembled peptide-hydrogels are ideal biomaterials for skin wound healing due to their similar nanostructure to natural extracellular matrix, hydration environment and serving as drug delivery systems. In our study, resveratrol, a polyphenol compound with anti-inflammatory effect, is loaded into peptide-hydrogel (Fmoc-FFGGRGD) to form a wound dressing (Pep/RES). Resveratrol is slowly released from the hydrogel in situ, and the release amount is controlled by the loading amount. The in vitro cell experiments demonstrate that the Pep/RES has no cytotoxicity and can inhibit the production of pro-inflammatory cytokines of macrophages. The Pep/RES hydrogels are used as wound dressings in rat skin damage model. The results suggest that the Pep/RES dressing can accelerate wound healing rate, exhibit well-organized collagen deposition, reduce inflammation and eventually prevent scar formation. The Pep/RES hydrogels supply a potential product to develop new skin wound dressings for the therapy of skin damage.


2019 ◽  
Vol 7 ◽  
Author(s):  
Peng Hu ◽  
Qinxin Yang ◽  
Qi Wang ◽  
Chenshuo Shi ◽  
Dali Wang ◽  
...  

Abstact Cutaneous regeneration at the wound site involves several intricate and dynamic processes which require a series of coordinated interactions implicating various cell types, growth factors, extracellular matrix (ECM), nerves, and blood vessels. Mesenchymal stromal cells (MSCs) take part in all the skin wound healing stages playing active and beneficial roles in animal models and humans. Exosomes, which are among the key products MSCs release, mimic the effects of parental MSCs. They can shuttle various effector proteins, messenger RNA (mRNA) and microRNAs (miRNAs) to modulate the activity of recipient cells, playing important roles in wound healing. Moreover, using exosomes avoids many risks associated with cell transplantation. Therefore, as a novel type of cell-free therapy, MSC-exosome -mediated administration may be safer and more efficient than whole cell. In this review, we provide a comprehensive understanding of the latest studies and observations on the role of MSC-exosome therapy in wound healing and cutaneous regeneration. In addition, we address the hypothesis of MSCs microenvironment extracellular vesicles (MSCs-MEVs) or MSCs microenvironment exosomes (MSCs-MExos) that need to take stock of and solved urgently in the related research about MSC-exosomes therapeutic applications. This review can inspire investigators to explore new research directions of MSC-exosome therapy in cutaneous repair and regeneration.


2014 ◽  
Vol 3 (4) ◽  
pp. 304-314 ◽  
Author(s):  
Michael Sung-Min Hu ◽  
Robert C. Rennert ◽  
Adrian McArdle ◽  
Michael T. Chung ◽  
Graham G. Walmsley ◽  
...  

2017 ◽  
Vol 49 (5) ◽  
pp. e334-e334 ◽  
Author(s):  
Harlan Barker ◽  
Marleena Aaltonen ◽  
Peiwen Pan ◽  
Maria Vähätupa ◽  
Pirkka Kaipiainen ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1377
Author(s):  
Oriana Simonetti ◽  
Giulio Rizzetto ◽  
Giulia Radi ◽  
Elisa Molinelli ◽  
Oscar Cirioni ◽  
...  

Among the most common complications of both chronic wound and surgical sites are staphylococcal skin infections, which slow down the wound healing process due to various virulence factors, including the ability to produce biofilms. Furthermore, staphylococcal skin infections are often caused by methicillin-resistant Staphylococcus aureus (MRSA) and become a therapeutic challenge. The aim of this narrative review is to collect the latest evidence on old and new anti-staphylococcal therapies, assessing their anti-biofilm properties and their effect on skin wound healing. We considered antibiotics, quorum sensing inhibitors, antimicrobial peptides, topical dressings, and antimicrobial photo-dynamic therapy. According to our review of the literature, targeting of biofilm is an important therapeutic choice in acute and chronic infected skin wounds both to overcome antibiotic resistance and to achieve better wound healing.


2019 ◽  
Vol 16 (1) ◽  
pp. 18-26
Author(s):  
Mardin O. Mohammed ◽  
Osman J. Ali ◽  
Sozan A. Muhamad ◽  
Salam H. Ibrahim ◽  
Goran M. Raouf ◽  
...  

Development ◽  
1992 ◽  
Vol 114 (1) ◽  
pp. 253-259 ◽  
Author(s):  
H.P. Lorenz ◽  
M.T. Longaker ◽  
L.A. Perkocha ◽  
R.W. Jennings ◽  
M.R. Harrison ◽  
...  

Animal studies demonstrate that the fetus heals cutaneous wounds by reformation of normal tissue architecture without scar formation. We have developed a new model to study human fetal skin wound healing. Grafts of human fetal skin placed onto athymic mice retain the morphologic features of normal development, although they differentiate at an accelerated rate when placed cutaneously compared to subcutaneously. Full-thickness skin grafts from human fetuses at 15 (n = 12), 17 (n = 11), 18 (n = 25), 19 (n = 20) and 22 (n = 13) weeks gestational age were placed onto athymic (nu/nu) mice in 2 locations: (1) cutaneously onto a fascial bed and thereby exposed to air or (2) subcutaneously in a pocket under the murine panniculus carnosus. Linear incisions were made in each graft 7 days after transplantation. Grafts were harvested at 7, 14 and 21 days postwounding and analyzed histologically for scar formation. By hematoxylin & eosin and Mallory's trichrome stains, complete epidermal and dermal graft wound healing without scar formation was demonstrated in the subcutaneous grafts at each gestational age studied. In contrast, scar was seen at all time points in the cutaneous grafts in both the incisional wound and at the interface of the fetal human skin graft and adult mouse skin, regardless of fetal skin gestational age.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document