The antioxidant effects of green tea reduces blood pressure and sympathoexcitation in an experimental model of hypertension

2017 ◽  
Vol 35 (2) ◽  
pp. 348-354 ◽  
Author(s):  
Michelle L. Garcia ◽  
Roberto B. Pontes ◽  
Erika E. Nishi ◽  
Flávia K. Ibuki ◽  
Vanessa Oliveira ◽  
...  
2010 ◽  
Vol 120 (6) ◽  
pp. 219-229 ◽  
Author(s):  
Madhav Lavu ◽  
Shashi Bhushan ◽  
David J. Lefer

H2S (hydrogen sulfide), viewed with dread for more than 300 years, is rapidly becoming a ubiquitously present and physiologically relevant signalling molecule. Knowledge of the production and metabolism of H2S has spurred interest in delineating its functions both in physiology and pathophysiology of disease. Although its role in blood pressure regulation and interaction with NO is controversial, H2S, through its anti-apoptotic, anti-inflammatory and antioxidant effects, has demonstrated significant cardioprotection. As a result, a number of sulfide-donor drugs, including garlic-derived polysulfides, are currently being designed and investigated for the treatment of cardiovascular conditions, specifically myocardial ischaemic disease. However, huge gaps remain in our knowledge about this gasotransmitter. Only by additional studies will we understand more about the role of this intriguing molecule in the treatment of cardiovascular disease.


2016 ◽  
Vol 6 (3) ◽  
pp. 211
Author(s):  
Suzanne Pears ◽  
Neroli Sunderland ◽  
Alicia Dennis ◽  
Shirlene Lim ◽  
Katrina Chau ◽  
...  

1996 ◽  
Vol 7 (12) ◽  
pp. 2694-2699
Author(s):  
M C Ortíz ◽  
L A Fortepiani ◽  
C Martínez ◽  
N M Atucha ◽  
J García-Estañ

Recent work indicates that nitric oxide (NO) plays an important role in the systemic and renal alterations of liver cirrhosis. This study used aminoguanidine (AG), a preferential inhibitor of inducible nitric oxide synthase (iNOS), to evaluate the role of this NOS isoform in the systemic and renal alterations of an experimental model of liver cirrhosis with ascites (carbon tetrachloride/ phenobarbital). Experiments have been performed in anesthetized cirrhotic rats and their respective control rats prepared for clearance studies. Administration of AG (10 to 100 mg/kg, iv) elevated dose-dependent mean arterial pressure (MAP, in mm Hg) in the cirrhotic rats from a basal level of 79.3 +/- 3.6 to 115.0 +/- 4.7, whereas in the control animals, MAP increased only with the highest dose of the inhibitor (from 121.8 +/- 3.6 to 133.3 +/- 1.4). In the cirrhotic group, AG also significantly increased sodium and water excretion, whereas these effects were very modest in the control group. Plasma concentration of nitrates+nitrites, measured as an index of NO production, were significantly increased in the cirrhotic animals in the basal period and decreased with AG to levels not significantly different from the control animals. Similar experiments performed with the nonspecific NOS inhibitor N omega-nitro-L-arginine (NNA) also demonstrated an increased pressor sensitivity of the cirrhotic rats, but the arterial hypotension was completely corrected. These results, in an experimental model of liver cirrhosis with ascites, show that AG exerts a beneficial effect as a result of inhibition of NO production, increasing blood pressure and improving the reduced excretory function. Because NNA, but not AG, completely normalized the arterial hypotension, it is suggested that the constitutive NOS isoform is also contributing in an important degree. It is concluded that the activation of both inducible and constitutive NOS isoforms plays an important role in the lower systemic blood pressure and associated abnormalities that characterize liver cirrhosis.


2014 ◽  
Vol 53 (6) ◽  
pp. 1299-1311 ◽  
Author(s):  
Saman Khalesi ◽  
Jing Sun ◽  
Nicholas Buys ◽  
Arash Jamshidi ◽  
Elham Nikbakht-Nasrabadi ◽  
...  

Food Research ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 62-66
Author(s):  
H.S. Song

In order to explore the change of lipid oxidation of half-dried eels treated with green tea extracts and stored frozen, acid values, peroxide values, carbonyl values, and TBA values were measured. The eels were placed into the plastic bag and soaked for 1 hr in the solution mixed with distilled water and green tea extracts, and also vacuumed and stored frozen at –18 ∼ –20°C for 9 months after being dried with a hot-air blower for 15 hrs at 35°C (Aw 90-91). The control consisted of eels prepared in the same way without any pretreatment. At the end of the 1st month, 3rd month, 6th month, and 9th month, eel oil obtained from the samples were tested for its lipid oxidation. The activity of green tea extracts 1 mL was very similar to Vitamin C 500 μM 0.8 mL. The acid values, peroxide values, carbonyl values, and TBA values of eels treated with green tea extracts were lower than those of the control during 9 months of frozen storage (p<0.05). While the acid values and peroxide values of the control and eels treated with green tea extracts highly increased after the first month of frozen storage, the TBA values increased greatly on the third month of frozen storage. Compared to the control, the pre-application of green tea extracts to half-dried eels meaningfully prevented the generation of TBA compound during the frozen storage (p<0.01). In conclusion, pre-application of green tea extracts was effective in delaying early-stage peracid inducement and preventing the generation of secondary oxidation compounds, such as carbonyl compound and TBA compound, in the course of the drying and frozen storage


Circulation ◽  
2021 ◽  
Vol 143 (Suppl_1) ◽  
Author(s):  
Mingyu Zhang ◽  
Tiange Liu ◽  
Guoying Wang ◽  
Jessie P Buckley ◽  
Eliseo Guallar ◽  
...  

Background: In utero exposure to metals lead (Pb), cadmium (Cd), and mercury (Hg) may be associated with higher childhood systolic blood pressure (SBP), while trace elements manganese (Mn) and selenium (Se) may have protective, antioxidant effects that modify metal-SBP associations. No study has examined how in utero co-exposure to these metals affect offspring SBP. Objectives: To examine the individual and joint effects of in utero exposure to Cd, Pb, Hg, Mn, and Se on offspring SBP. Methods: We used data from the Boston Birth Cohort (enrolled 2002-2013). We measured metals in maternal red blood cells collected 24-72 hours after delivery. We calculated child age-, sex-, and height-specific SBP percentile per 2017 American Academy of Pediatrics guidelines. We used linear regression models to estimate associations of each metal, and Bayesian kernel machine regression (BKMR) to examine metal co-exposures, with child SBP between 3 to 15 years of age. Results: Our analytic sample comprised 1194 mother-child pairs (61% Black, 20% Hispanic). Hg and Pb were not associated with child SBP. Se and Mn were inversely associated with child SBP: each log2(Se) and log2(Mn) increment was associated with a 6.23 (95% CI: 0.96-11.51) and a 2.62 (95% CI: 0.04-5.20) percentile lower child SBP, respectively. BKMR models showed similar results ( Panel A ). While Cd was not overall associated with child SBP, there was an antagonistic interaction between Cd and Mn (P-interaction = 0.036): the association of Mn and lower child SBP was stronger with higher levels of Cd ( Panel B ). Consistent with this finding, in utero exposure to cigarette smoke (a major source of Cd) modified the association of Mn and child SBP: among children born mothers who smoked cigarette in pregnancy, each log2(Mn) increment was associated with a 10.09 (95% CI: 2.15-18.03) percentile lower SBP ( Panel C ). Conclusion: Optimizing in utero Se levels, as well as Mn levels in pregnant women who had high Cd or smoked during pregnancy, may protect offspring from developing high BP during childhood.


2015 ◽  
Vol 11 (5) ◽  
pp. 508-512 ◽  
Author(s):  
Maria C. Castillo-H ◽  
Eleazar Lara-Padil ◽  
Alexandre Kormanovsk ◽  
Jorge G. Perez-Tuno ◽  
Emilio M. Lopez-C ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document