scholarly journals MP50-16 PROGNOSTIC VALUE OF EPITHELIAL-MESENCHYMAL TRANSITION MARKERS IN CLEAR CELL RENAL CELL CARCINOM

2020 ◽  
Vol 203 ◽  
pp. e759-e760
Author(s):  
Hua Xu* ◽  
Ding-wei Ye, Shanghai
Aging ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 866-883 ◽  
Author(s):  
Hua Xu ◽  
Wen-Hao Xu ◽  
Fei Ren ◽  
Jun Wang ◽  
Hong-Kai Wang ◽  
...  

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Lu Wang ◽  
Guang Yang ◽  
Danfeng Zhao ◽  
Jiaqi Wang ◽  
Yang Bai ◽  
...  

Abstract Background Clear cell renal cell carcinoma (CCRCC) is characterized by a highly metastatic potential. The stromal communication between stem cells and cancer cells critically influences metastatic dissemination of cancer cells. Methods The effect of exosomes isolated from cancer stem cells (CSCs) of CCRCC patients on the progress of epithelial-mesenchymal transition (EMT) and lung metastasis of CCRCC cells were examined. Results CSCs exosomes promoted proliferation of CCRCC cells and accelerated the progress of EMT. Bioactive miR-19b-3p transmitted to cancer cells by CSC exosomes induced EMT via repressing the expression of PTEN. CSCs exosomes derived from CCRCC patients with lung metastasis produced the strongest promoting effect on EMT. Notably, CD103+ CSC exosomes were enriched in tumor cells and in lung as well, highlighting the organotropism conferred by CD103. In addition, CD103+ exosomes were increased in blood samples from CCRCC patients with lung metastasis. Conclusions CSC exosomes transported miR-19b-3p into CCRCC cells and initiated EMT promoting metastasis. CD103+ acted to guide CSC exosomes to target cancer cells and organs, conferring the higher metastatic capacity of CCRCC to lungs, suggesting CD103+ exosomes as a potential metastatic diagnostic biomarker. Graphical abstract ᅟ


2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Bin Zhao ◽  
Lei Liu ◽  
Jun Mao ◽  
Zhiwei Zhang ◽  
Qifei Wang ◽  
...  

A Correction to this paper has been published: https://doi.org/10.1038/s41419-021-03387-3


2021 ◽  
Vol 8 ◽  
Author(s):  
Guoliang Sun ◽  
Yue Ge ◽  
Yangjun Zhang ◽  
Libin Yan ◽  
Xiaoliang Wu ◽  
...  

Dysregulation of transcription factors contributes to the carcinogenesis and progression of cancers. However, their roles in clear cell renal cell carcinoma remain largely unknown. This study aimed to evaluate the clinical significance of TFs and investigate their potential molecular mechanisms in ccRCC. Data were accessed from the cancer genome atlas kidney clear cell carcinoma cohort. Bioinformatics algorithm was used in copy number alterations mutations, and differentially expressed TFs’ analysis. Univariate and multivariate Cox regression analyses were performed to identify clinically significant TFs and construct a six-TF prognostic panel. TFs’ expression was validated in human tissues. Gene set enrichment analysis (GSEA) was utilized to find enriched cancer hallmark pathways. Functional experiments were conducted to verify the cancer-promoting effect of BARX homeobox 1 (BARX1) and distal-less homeobox 4 (DLX4) in ccRCC, and Western blot was performed to explore their downstream pathways. As for results, many CNAs and mutations were identified in transcription factor genes. TFs were differentially expressed in ccRCC. An applicable predictive panel of six-TF genes was constructed to predict the overall survival for ccRCC patients, and its diagnostic efficiency was evaluated by the area under the curve (AUC). BARX1 and DLX4 were associated with poor prognosis, and they could promote the proliferation and migration of ccRCC. In conclusion, the six-TF panel can be used as a prognostic biomarker for ccRCC patients. BARX1 and DLX4 play oncogenic roles in ccRCC via promoting proliferation and epithelial–mesenchymal transition. They have the potential to be novel therapeutic targets for ccRCC.


Oncogene ◽  
2021 ◽  
Author(s):  
Judyta Gorka ◽  
Paulina Marona ◽  
Oliwia Kwapisz ◽  
Agnieszka Waligórska ◽  
Ewelina Pospiech ◽  
...  

AbstractEpithelial-mesenchymal transition (EMT) refers to the acquisition of mesenchymal properties in cells participating in tumor progression. One hallmark of EMT is the increased level of active β-catenin, which can trigger the transcription of Wnt-specific genes responsible for the control of cell fate. We investigated how Monocyte Chemotactic Protein-1-Induced Protein-1 (MCPIP1), a negative regulator of inflammatory processes, affects EMT in a clear cell renal cell carcinoma (ccRCC) cell line, patient tumor tissues and a xenotransplant model. We showed that MCPIP1 degrades miRNAs via its RNase activity and thus protects the mRNA transcripts of negative regulators of the Wnt/β-catenin pathway from degradation, which in turn prevents EMT. Mechanistically, the loss of MCPIP1 RNase activity led to the upregulation of miRNA-519a-3p, miRNA-519b-3p, and miRNA-520c-3p, which inhibited the expression of Wnt pathway inhibitors (SFRP4, KREMEN1, CXXC4, CSNK1A1 and ZNFR3). Thus, the level of active nuclear β-catenin was increased, leading to increased levels of EMT inducers (SNAI1, SNAI2, ZEB1 and TWIST) and, consequently, decreased expression of E-cadherin, increased expression of mesenchymal markers, and acquisition of the mesenchymal phenotype. This study revealed that MCPIP1 may act as a tumor suppressor that prevents EMT by stabilizing Wnt inhibitors and decreasing the levels of active β-catenin and EMT inducers.


Sign in / Sign up

Export Citation Format

Share Document