Intestinal fibrosis in inflammatory bowel disease: progress in basic and clinical science

2008 ◽  
Vol 24 (4) ◽  
pp. 462-468 ◽  
Author(s):  
Florian Rieder ◽  
Claudio Fiocchi
2020 ◽  
Vol 21 ◽  
Author(s):  
Roberto Gabbiadini ◽  
Eirini Zacharopoulou ◽  
Federica Furfaro ◽  
Vincenzo Craviotto ◽  
Alessandra Zilli ◽  
...  

Background: Intestinal fibrosis and subsequent strictures represent an important burden in inflammatory bowel disease (IBD). The detection and evaluation of the degree of fibrosis in stricturing Crohn’s disease (CD) is important to address the best therapeutic strategy (medical anti-inflammatory therapy, endoscopic dilation, surgery). Ultrasound elastography (USE) is a non-invasive technique that has been proposed in the field of IBD for evaluating intestinal stiffness as a biomarker of intestinal fibrosis. Objective: The aim of this review is to discuss the ability and current role of ultrasound elastography in the assessment of intestinal fibrosis. Results and Conclusion: Data on USE in IBD are provided by pilot and proof-of-concept studies with small sample size. The first type of USE investigated was strain elastography, while shear wave elastography has been introduced lately. Despite the heterogeneity of the methods of the studies, USE has been proven to be able to assess intestinal fibrosis in patients with stricturing CD. However, before introducing this technique in current practice, further studies with larger sample size and homogeneous parameters, testing reproducibility, and identification of validated cut-off values are needed.


Author(s):  
Giorgos Bamias ◽  
Theresa T Pizarro ◽  
Fabio Cominelli

Abstract Intestinal fibrosis is a late-stage phenotype of inflammatory bowel disease (IBD), which underlies most of the long-term complications and surgical interventions in patients, particularly those with Crohn’s disease. Despite these issues, antifibrotic therapies are still scarce, mainly due to the current lack of understanding concerning the pathogenetic mechanisms that mediate fibrogenesis in patients with chronic intestinal inflammation. In the current review, we summarize recent evidence regarding the cellular and molecular factors of innate and adaptive immunity that are considered critical for the initiation and amplification of extracellular matrix deposition and stricture formation. We focus on the role of cytokines by dissecting the pro- vs antifibrotic components of the immune response, while taking into consideration their temporal association to the progressive stages of the natural history of IBD. We critically present evidence from animal models of intestinal fibrosis and analyze inflammation-fibrosis interactions that occur under such experimental scenarios. In addition, we comment on recent findings from large-scale, single-cell profiling of fibrosis-relevant populations in IBD patients. Based on such evidence, we propose future potential targets for antifibrotic therapies to treat patients with IBD.


2018 ◽  
Vol 13 (5) ◽  
pp. 659-668 ◽  
Author(s):  
Sara Lovisa ◽  
Giannicola Genovese ◽  
Silvio Danese

Abstract Intestinal fibrosis is an inevitable complication in patients with inflammatory bowel disease [IBD], occurring in its two major clinical manifestations: ulcerative colitis and Crohn’s disease. Fibrosis represents the final outcome of the host reaction to persistent inflammation, which triggers a prolonged wound healing response resulting in the excessive deposition of extracellular matrix, eventually leading to intestinal dysfunction. The process of epithelial-to-mesenchymal transition [EMT] represents an embryonic program relaunched during wound healing, fibrosis and cancer. Here we discuss the initial observations and the most recent findings highlighting the role of EMT in IBD-associated intestinal fibrosis and fistulae formation. In addition, we briefly review knowledge on the cognate process of endothelial-to-mesenchymal transition [EndMT]. Understanding EMT functionality and the molecular mechanisms underlying the activation of this mesenchymal programme will permit designing new therapeutic strategies to halt the fibrogenic response in the intestine.


2010 ◽  
Vol 16 (12) ◽  
pp. 2004-2006 ◽  
Author(s):  
Yusuke Honzawa ◽  
Hiroshi Nakase ◽  
Yasuhiro Takeda ◽  
Kazuhiro Nagata ◽  
Tsutomu Chiba

2017 ◽  
Vol 35 (1-2) ◽  
pp. 25-31 ◽  
Author(s):  
Dominik Bettenworth ◽  
Florian Rieder

Background: Intestinal fibrosis with stricture formation is a common feature of inflammatory bowel disease (IBD) and leads to a significantly impaired quality of life in affected patients, intestinal obstruction as well as to the need for surgical intervention. This constitutes a major treatment challenge. Key Messages: Fibrosis results from the response of gut tissue to the insult inflicted by chronic inflammation. Similarly to what occurs in other organs, the underlying fibrogenic mechanisms are complex and dynamic, involving multiple cell types, interrelated cellular events, and a large number of soluble factors. Owing to a breakdown of the epithelial barrier in IBD, luminal bacterial products leak into the interstitium and induce an innate immune response mediated by the activation of both immune and non-immune cells. Other environmental factors as well as chronic inflammation will certainly impact the quality and quantity of intestinal fibrosis. Finally, the composition of the intestinal extracellular matrix is dramatically altered in chronic gut inflammation and actively promotes fibrosis through its mechanical properties. The conventional view that intestinal fibrosis is an inevitable and irreversible process is gradually changing in light of an improved understanding of the cellular and molecular mechanisms that underline its pathogenesis. In addition, clinical observations in patients who undergo strictureplasty have shown that stricture formation is reversible. Conclusions: Identification of the unique mechanisms of intestinal fibrogenesis should create a practical framework to target and block specific fibrogenic pathways, estimate the risk of fibrotic complications, permit the detection of early fibrotic changes and, eventually, allow the development of treatment methods customized to each patient's type and degree of intestinal fibrosis.


2021 ◽  
Vol 9 (7S) ◽  
pp. 5-6
Author(s):  
Khristian E. Bauer-Rowe ◽  
Jeong Hyunh ◽  
Deshka S. Foster ◽  
Michelle Griffin ◽  
Shamik Mascharak ◽  
...  

2019 ◽  
Vol 20 (16) ◽  
pp. 4061 ◽  
Author(s):  
Simona Pompili ◽  
Roberta Sferra ◽  
Eugenio Gaudio ◽  
Angelo Viscido ◽  
Giuseppe Frieri ◽  
...  

One of the main mechanisms carried out by the cells to counteract several forms of stress is the activation of the nuclear factor erythroid 2-related factor (Nrf2) signaling. Nrf2 signaling controls the expression of many genes through the binding of a specific cis-acting element known as the antioxidant response element (ARE). Activation of Nrf2/ARE signaling can mitigate several pathologic mechanisms associated with an autoimmune response, digestive and metabolic disorders, as well as respiratory, cardiovascular, and neurodegenerative diseases. Indeed, several studies have demonstrated that Nrf2 pathway plays a key role in inflammation and in cancer development in many organs, including the intestine. Nrf2 appears to be involved in inflammatory bowel disease (IBD), an immune-mediated chronic and disabling disease, with a high risk of developing intestinal fibrotic strictures and cancer. Currently, drugs able to increase cytoprotective Nrf2 function are in clinical trials or already being used in clinical practice to reduce the progression of some degenerative conditions. The role of Nrf2 in cancer development and progression is controversial, and drugs able to inhibit abnormal levels of Nrf2 are also under investigation. The goal of this review is to analyze and discuss Nrf2-dependent signals in the initiation and progression of intestinal fibrosis and cancers occurring in IBD.


Sign in / Sign up

Export Citation Format

Share Document