Azacitidine maintenance in AML post induction and posttransplant

2022 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Jan Philipp Bewersdorf ◽  
Thomas Prebet ◽  
Lohith Gowda
Keyword(s):  
2021 ◽  
Vol 12 (10) ◽  
pp. e00401
Author(s):  
Eran Zittan ◽  
A. Hillary Steinhart ◽  
Pavel Goldstein ◽  
Raquel Milgrom ◽  
Ian M. Gralnek ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4739-4739
Author(s):  
Pieter Sonneveld ◽  
Maria-Victoria Mateos ◽  
Adrián Alegre ◽  
Thierry Facon ◽  
Cyrille Hulin ◽  
...  

Introduction: For patients with newly diagnosed multiple myeloma (NDMM) who are transplant-eligible, bortezomib/thalidomide/dexamethasone (VTd) is a standard of care (SoC) for induction and consolidation therapy. Clinical practice has evolved to use a modified VTd dose (VTd-mod; 100 mg thalidomide daily), which is reflected in recent treatment guidelines. As VTd-mod has become a real-world SoC, a matching-adjusted indirect comparison (MAIC) of the VTd-mod dose from recent clinical trials versus the dose included in the label (VTd-label; ramp up to 200 mg thalidomide daily) was performed to understand the effect on efficacy of modified VTd dosing for patients with NDMM who are transplant-eligible. Methods: For each outcome (overall survival [OS], progression-free survival [PFS], overall response rates [ORR] post-induction and post-transplant, and rate of peripheral neuropathy), a naïve comparison and a MAIC were performed. Data for VTd-label were obtained from the phase 3 PETHEMA/GEM study (Rosiñol L, et al. Blood. 2012;120[8]:1589-1596). Data for VTd-mod were pooled from the phase 3 CASSIOPEIA study (Moreau P, et al. Lancet. 2019;394[10192]:29-38) and the phase 2 NCT00531453 study (Ludwig H, et al. J Clin Oncol. 2013;31[2]:247-255). Patient-level data for PETHEMA/GEM and CASSIOPEIA were used to generate outcomes of interest and were validated against their respective clinical study reports; aggregate data for NCT00531453 were extracted from the primary publication. Matched baseline characteristics were age, sex, ECOG performance status, myeloma type, International Staging System (ISS) stage, baseline creatinine clearance, hemoglobin level, and platelet count. Results: Patients received VTd-mod (n = 591) or VTd-label (n = 130). After matching, baseline characteristics were similar across groups. For OS, the naïve comparison and the MAIC showed that VTd-mod was non-inferior to VTd-label (MAIC HR, 0.640 [95% CI: 0.363-1.129], P = 0.121; Figure 1A). VTd-mod significantly improved PFS versus VTd-label in the naïve comparison and MAIC (MAIC HR, 0.672 [95% CI: 0.467-0.966], P = 0.031; Figure 1B). Post-induction ORR was non-inferior for VTd-mod versus VTd-label (MAIC odds ratio, 1.781 [95% CI: 1.004-3.16], P = 0.065). Post-transplant, VTd-mod demonstrated superior ORR in both the naïve comparison and MAIC (MAIC odds ratio, 2.661 [95% CI: 1.579-4.484], P = 0.001). For rates of grade 3 or 4 peripheral neuropathy, the naïve comparison and MAIC both demonstrated that VTd-mod was non-inferior to VTd-label (MAIC rate difference, 2.4 [⁻1.7-6.49], P = 0.409). Conclusions: As naïve, indirect comparisons are prone to bias due to patient heterogeneity between studies, a MAIC can provide useful insights for clinicians and reimbursement decision-makers regarding the relative efficacy and safety of different treatments. In this MAIC, non-inferiority of VTd-mod versus VTd-label was demonstrated for OS, post-induction ORR, and peripheral neuropathy. This analysis also showed that VTd-mod significantly improved PFS and ORR post-transplant compared with VTd-label for patients with NDMM who are transplant-eligible. A limitation of this analysis is that unreported or unobserved confounding factors could not be adjusted for. Disclosures Sonneveld: Takeda: Honoraria, Research Funding; SkylineDx: Research Funding; Janssen: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; BMS: Honoraria; Amgen: Honoraria, Research Funding; Karyopharm: Honoraria, Research Funding. Mateos:Janssen, Celgene, Takeda, Amgen, Adaptive: Honoraria; AbbVie Inc, Amgen Inc, Celgene Corporation, Genentech, GlaxoSmithKline, Janssen Biotech Inc, Mundipharma EDO, PharmaMar, Roche Laboratories Inc, Takeda Oncology: Other: Advisory Committee; Janssen, Celgene, Takeda, Amgen, GSK, Abbvie, EDO, Pharmar: Membership on an entity's Board of Directors or advisory committees; Amgen Inc, Celgene Corporation, Janssen Biotech Inc, Takeda Oncology.: Speakers Bureau; Amgen Inc, Janssen Biotech Inc: Other: Data and Monitoring Committee. Alegre:Celgene, Amgen, Janssen, Takeda: Membership on an entity's Board of Directors or advisory committees. Facon:Takeda: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Amgen: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Hulin:celgene: Consultancy, Honoraria; Janssen, AbbVie, Celgene, Amgen: Honoraria. Hashim:Ingress-Health: Employment. Vincken:Janssen: Employment, Equity Ownership. Kampfenkel:Janssen: Employment, Equity Ownership. Cote:Janssen: Employment, Equity Ownership. Moreau:Janssen: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Takeda: Consultancy, Honoraria.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 7-8
Author(s):  
Maël Heiblig ◽  
Hélène Labussière ◽  
Marie Virginie Larcher ◽  
Gaelle Fossard ◽  
Marie Balsat ◽  
...  

Minimal residual disease is now a powerfull surrogate marker to assess response to chemotherapy in acute myeloid leukemia (AML). In younger adults, NPM1 MRD has recently demonstrated to be a favorable predictive marker for EFS and OS independently of fms-like tyrosine kinase-3 internal tandem duplications (FLT3-ITD) status. However, there is very few datas regarding predictive value of NPM1 MRD in elderly patients treated with intensive chemotherapy. Moreover, numerous studies have suggested the negative impact of DNMT3a mutation in NPM1 AML patients, especially in those with concurrent FLT3-ITD mutation. In this study, we aimed to investigate the impact of DNMT3a status on post induction NPM1 MRD1 predictive value for survival in a retrospective cohort of AML patients aged over 60 years old treated intensively. A total of 138 patients treated for NPM1 mutated AML in two French institutions (Lyon, Lille) were analyzed retrospectively. Median age of the entire cohort was 66.1 years old (range 60-78.2). An FLT3-ITD mutation was evidenced in 52 of 138 patients (37.6%) with a median FLT3-ITD AR of 0.53 (range, 0.05-3). With a median follow-up of 19.61 months (0.07-128.4), the overall CR rate was 89.9% with no influence of DNMT3a or FLT3 mutational status on the probability of CR. In this elderly cohort of NPM1mut patients, a 4log reduction of NPM1 bone marrow (BM) MRD1 was associated with better outcome (median OS: NR vs 13.4 months, HR=0.35, p<0.01)(Figure A). Overall, DNMT3 status did not influence the probability of having a ≥ 4log MRD1 reduction after induction. However, only 9/44 (20.4%) FLT3-ITD patients reached ≥ 4log MRD1 reduction whereas 38/80 FLT3wt (47.5%) were good molecular responders (p<0.001). FLT3-ITD mutated patients who achieved a 4log reduction had a superior outcome compared to those who did not (HR=0.34; 95% CI, 0.16 to 0.70; P <0.001). Similarly, NPM1mut FLT3wt patients with a 4log reduction in NPM1 BM-MRD1 had a longer OS (3-year OS, 68.1%; 95% CI, 48.8 to 82.9) than those without good molecular response (3-year OS, 46.5%; 95% CI, 30.2 to 61.7)(Figure B). DNMT3a negative patients who achieved a 4log reduction had a superior outcome to those who did not reached at least a 4log reduction (HR=0.23; 95% CI, 0.07 to 0.72; P <0.001). However, postinduction NPM1 MRD1 reduction was not predictive of OS and leukemia free survival (LFS) in DNMT3amut patients. DNMT3amut patients has a very poor LFS which was even worst in poor NPM1 MRD1 responders compared to those who reached at least 4log reduction (median LFS: 8.3 months vs 17.4 months, HR = 0.48, 95% CI, 0.25-0.91, p=0.023)(Figure C). In multivariate analysis, only DNMT3a mutational status and a 4-log reduction in NPM1 BM-MRD were significantly associated with survival. Based on these results, we identified among NPM1 positive patients 3 groups with distinct prognosis, based on FLT3-ITD, DNMT3a status and NPM1 BM-MRD post induction response (NPM1 scoring system)(Figure D). When compared to ELN 2017 intermediate risk group (AUC=0.695), NPM1 scoring system (NPM1 SS) was more accurate for OS prediction in patients within intermediate (AUC=0.833) and unfavorable (AUC=0.863) NPM1 SS risk group. However, there was no significant difference in AUC between NPM1 SS favorable and ELN 2017 favorable risk group. These results confirm that post-induction NPM1 MRD1 is a reliable tool to assess disease outcome in elderly AML patients. However, the presence of DNMT3a also identify a subgroup of patients at very high risk of relapase, despite good molecular responses. As hematopoietic stem cell transplantation (HSCT) might improve OS in elderly patients, DNMT3a positive AML elderly patients should be considered for HSCT or post induction maintenance strategies, even within the favorable ELN risk group. Figure Disclosures Sujobert: Gilead/Kyte: Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Sunesis: Research Funding.


2018 ◽  
Vol 66 (1) ◽  
pp. e27433
Author(s):  
Arun Gurunathan ◽  
Ami V. Desai ◽  
L. Charles Bailey ◽  
Yimei Li ◽  
John K. Choi ◽  
...  

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Ursula Rauch ◽  
Andreas Eisenreich ◽  
Wolfgang Poller ◽  
Heinz-Peter Schultheiss

Background: Higher eukaryotes control gene expression and increase protein diversity by alternative splicing of pre-mRNA. The Cdc2-like kinase (Clk) family, DNA topoisomerase I (DNA topo I) or Akt kinase are involved in splicing control by regulating the phosphorylation state of serine/arginine rich (SR) proteins. We recently showed that alternatively spliced human tissue factor (asHTF), a soluble isoform of tissue factor (TF), the primary initiator of coagulation, is expressed in HUVECs in response to inflammatory cytokines. This study investigated the role of Clks, DNA topo I and the PI3K-Pathway in regulation of TF-splicing in TNF-α induced HUVECs. Methods: HUVECs were incubated with inhibitors of Clks, DNA-topo I or PI3K and were then stimulated with TNF-α. The SR protein phosphorylation state was determined 2 min post induction. The full length (fl) TF and asHTF mRNA were assessed 60 min post induction by Real-Time PCR. Proteins were measured 5 and 8 hours after stimulation by Western blots and the cell thrombogenicity was analyzed via a chromogenic assay. Results: TNF-α inceased the mRNA expression of asHTF and flTF in HUVECs. The Clk-inhibitor completely inhibited the TNF-α induced expression of asHTF and reduced flTF by 30 %. Inhibition of DNA topo I increased asHTF expression and reduced the flTF expression. Inhibition of the PI3K/Akt-pathway had no effect on TF mRNA expression. Reduced Clk-inhibition the TF activity by 50 % whereas DNA topo I inhibition significantly decreased the procoagulant TF activity 8 hours post TNF-α induction. The Clk- and DNA-topo I-inhibitors altered the SR-protein phosphorylation pattern post TNF-α-induction. Additionally resulted inhibition of Clks in the generation of a third TF mRNA-splice variant, TF-A. Conclusion: Selective inhibition of Clks or DNA topo I leads to alterations of SR-protein phosphorylation and affects the differential expression of TF isoforms, thereby modulating the thrombogenicity of HUVECs. The inhibition of Clks contributes to the generation of a third TF splice variant. The inhibition of these kinases gives new insights into the regulation of the TF gene splicing process, which may result in new therapeutic strategies for modulating cellular thrombogenicity.


Sign in / Sign up

Export Citation Format

Share Document