scholarly journals A Case of Possible Chronic Traumatic Encephalopathy and Alzheimer’s Disease in an Ex-Football Player

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Arman Fesharaki-Zadeh
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jonathan D. Cherry ◽  
Camille D. Esnault ◽  
Zachary H. Baucom ◽  
Yorghos Tripodis ◽  
Bertrand R. Huber ◽  
...  

AbstractChronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disease, characterized by hyperphosphorylated tau, found in individuals with a history of exposure to repetitive head impacts. While the neuropathologic hallmark of CTE is found in the cortex, hippocampal tau has proven to be an important neuropathologic feature to examine the extent of disease severity. However, the hippocampus is also heavily affected in many other tauopathies, such as Alzheimer’s disease (AD). How CTE and AD differentially affect the hippocampus is unclear. Using immunofluorescent analysis, a detailed histologic characterization of 3R and 4R tau isoforms and their differential accumulation in the temporal cortex in CTE and AD was performed. CTE and AD were both observed to contain mixed 3R and 4R tau isoforms, with 4R predominating in mild disease and 3R increasing proportionally as pathological severity increased. CTE demonstrated high levels of tau in hippocampal subfields CA2 and CA3 compared to CA1. There were also low levels of tau in the subiculum compared to CA1 in CTE. In contrast, AD had higher levels of tau in CA1 and subiculum compared to CA2/3. Direct comparison of the tau burden between AD and CTE demonstrated that CTE had higher tau densities in CA4 and CA2/3, while AD had elevated tau in the subiculum. Amyloid beta pathology did not contribute to tau isoform levels. Finally, it was demonstrated that higher levels of 3R tau correlated to more severe extracellular tau (ghost tangles) pathology. These findings suggest that mixed 3R/4R tauopathies begin as 4R predominant then transition to 3R predominant as pathological severity increases and ghost tangles develop. Overall, this work demonstrates that the relative deposition of tau isoforms among hippocampal subfields can aid in differential diagnosis of AD and CTE, and might help improve specificity of biomarkers for in vivo diagnosis.


PLoS ONE ◽  
2017 ◽  
Vol 12 (9) ◽  
pp. e0185541 ◽  
Author(s):  
Jonathan D. Cherry ◽  
Thor D. Stein ◽  
Yorghos Tripodis ◽  
Victor E. Alvarez ◽  
Bertrand R. Huber ◽  
...  

2020 ◽  
Vol 10 (8) ◽  
pp. 479 ◽  
Author(s):  
Andrew King ◽  
Istvan Bodi ◽  
Claire Troakes

The definitive diagnosis of Alzheimer’s disease (AD) rests with post-mortem neuropathology despite the advent of more sensitive scanning and the search for reliable biomarkers. Even though the classic neuropathological features of AD have been known for many years, it was only relatively recently that more sensitive immunohistochemistry for amyloid beta (Aβ) and hyperphosphorylated tau (HP-tau) replaced silver-staining techniques. However, immunohistochemistry against these and other proteins has not only allowed a more scientific evaluation of the pathology of AD but also revealed some mimics of HP-tau pathological patterns of AD, including age-related changes, argyrophilic grain disease and chronic traumatic encephalopathy. It also highlighted a number of cases of AD with significant additional pathology including Lewy bodies, phosphorylated TDP-43 (p-TDP-43) positive neuronal cytoplasmic inclusions and vascular pathology. This concomitant pathology can cause a number of challenges including the evaluation of the significance of each pathological entity in the make-up of the clinical symptoms, and the threshold of each individual pathology to cause dementia. It also raises the possibility of underlying common aetiologies. Furthermore, the concomitant pathologies could provide explanations as to the relative failure of clinical trials of anti-Aβ therapy in AD patients.


Brain Injury ◽  
2016 ◽  
Vol 30 (11) ◽  
pp. 1279-1292 ◽  
Author(s):  
Ryan C. Turner ◽  
Brandon P. Lucke-Wold ◽  
Matthew J. Robson ◽  
John M. Lee ◽  
Julian E. Bailes

Brain ◽  
2020 ◽  
Vol 143 (5) ◽  
pp. 1572-1587 ◽  
Author(s):  
John D Arena ◽  
Douglas H Smith ◽  
Edward B Lee ◽  
Garrett S Gibbons ◽  
David J Irwin ◽  
...  

Abstract Traumatic brain injury (TBI) is a risk factor for neurodegenerative disease, including chronic traumatic encephalopathy (CTE). Preliminary consensus criteria define the pathognomonic lesion of CTE as patchy tau pathology within neurons and astrocytes at the depths of cortical sulci. However, the specific tau isoform composition and post-translational modifications in CTE remain largely unexplored. Using immunohistochemistry, we performed tau phenotyping of CTE neuropathologies and compared this to a range of tau pathologies, including Alzheimer’s disease, primary age-related tauopathy, ageing-related tau astrogliopathy and multiple subtypes of frontotemporal lobar degeneration with tau inclusions. Cases satisfying preliminary consensus diagnostic criteria for CTE neuropathological change (CTE-NC) were identified (athletes, n = 10; long-term survivors of moderate or severe TBI, n = 4) from the Glasgow TBI Archive and Penn Neurodegenerative Disease Brain Bank. In addition, material from a range of autopsy-proven ageing-associated and primary tauopathies in which there was no known history of exposure to TBI was selected as non-injured controls (n = 32). Each case was then stained with a panel of tau antibodies specific for phospho-epitopes (PHF1, CP13, AT100, pS262), microtubule-binding repeat domains (3R, 4R), truncation (Tau-C3) or conformation (GT-7, GT-38) and the extent and distribution of staining assessed. Cell types were confirmed with double immunofluorescent labelling. Results demonstrate that astroglial tau pathology in CTE is composed of 4R-immunoreactive thorn-shaped astrocytes, echoing the morphology and immunophenotype of astrocytes encountered in ageing-related tau astrogliopathy. In contrast, neurofibrillary tangles of CTE contain both 3R and 4R tau, with post-translational modifications and conformations consistent with Alzheimer’s disease and primary age-related tauopathy. Our observations establish that the astroglial and neurofibrillary tau pathologies of CTE are phenotypically distinct from each other and recapitulate the tau immunophenotypes encountered in ageing and Alzheimer’s disease. As such, the immunohistochemical distinction of CTE neuropathology from other mixed 3R/4R tauopathies of Alzheimer’s disease and ageing may rest solely on the pattern and distribution of pathology.


2016 ◽  
Vol 113 (50) ◽  
pp. E8187-E8196 ◽  
Author(s):  
Amanda L. Woerman ◽  
Atsushi Aoyagi ◽  
Smita Patel ◽  
Sabeen A. Kazmi ◽  
Iryna Lobach ◽  
...  

Tau prions are thought to aggregate in the central nervous system, resulting in neurodegeneration. Among the tauopathies, Alzheimer’s disease (AD) is the most common, whereas argyrophilic grain disease (AGD), corticobasal degeneration (CBD), chronic traumatic encephalopathy (CTE), Pick’s disease (PiD), and progressive supranuclear palsy (PSP) are less prevalent. Brain extracts from deceased individuals with PiD, a neurodegenerative disorder characterized by three-repeat (3R) tau prions, were used to infect HEK293T cells expressing 3R tau fused to yellow fluorescent protein (YFP). Extracts from AGD, CBD, and PSP patient samples, which contain four-repeat (4R) tau prions, were transmitted to HEK293 cells expressing 4R tau fused to YFP. These studies demonstrated that prion propagation in HEK cells requires isoform pairing between the infecting prion and the recipient substrate. Interestingly, tau aggregates in AD and CTE, containing both 3R and 4R isoforms, were unable to robustly infect either 3R- or 4R-expressing cells. However, AD and CTE prions were able to replicate in HEK293T cells expressing both 3R and 4R tau. Unexpectedly, increasing the level of 4R isoform expression alone supported the propagation of both AD and CTE prions. These results allowed us to determine the levels of tau prions in AD and CTE brain extracts.


2019 ◽  
Author(s):  
Wenjuan Zhang ◽  
Airi Tarutani ◽  
Kathy L. Newell ◽  
Alexey G. Murzin ◽  
Tomoyasu Matsubara ◽  
...  

Corticobasal degeneration (CBD) is a neurodegenerative tauopathy that is characterised by motor and cognitive disturbances (1–3). A higher frequency of the H1 haplotype of MAPT, the tau gene, is present in cases of CBD than in controls (4, 5) and genome-wide association studies have identified additional risk factors (6). By histology, astrocytic plaques are diagnostic of CBD (7, 8), as are detergent-insoluble tau fragments of 37 kDa by SDS-PAGE (9). Like progressive supranuclear palsy (PSP), globular glial tauopathy (GGT) and argyrophilic grain disease (AGD) (10), CBD is characterised by abundant filamentous tau inclusions that are made of isoforms with four microtubule-binding repeats (4R) (11–15). This distinguishes 4R tauopathies from Pick’s disease, filaments of which are made of three-repeat (3R) tau isoforms, and from Alzheimer’s disease and chronic traumatic encephalopathy (CTE), where both 3R and 4R tau isoforms are found in the filaments (16). Here we report the structures of tau filaments extracted from the brains of three individuals with CBD using electron cryo-microscopy (cryo-EM). They were identical between cases, but distinct from those of Alzheimer’s disease, Pick’s disease and CTE (17–19). The core of CBD filaments comprises residues K274-E380 of tau, spanning the last residue of R1, the whole of R2, R3 and R4, as well as 12 amino acids after R4. It adopts a novel four-layered fold, which encloses a large non-proteinaceous density. The latter is surrounded by the side chains of lysine residues 290 and 294 from R2 and 370 from the sequence after R4. CBD is the first 4R tauopathy with filaments of known structure.


Sign in / Sign up

Export Citation Format

Share Document