Enhanced Contraction of a Normal Breast-Derived Fibroblast–Populated Three-Dimensional Collagen Lattice via Contracted Capsule Fibroblast-Derived Paracrine Factors

2015 ◽  
Vol 135 (5) ◽  
pp. 1413-1429 ◽  
Author(s):  
Daniel. J. T. Kyle ◽  
Ardeshir Bayat
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Vitale Miceli ◽  
Mariangela Pampalone ◽  
Serena Vella ◽  
Anna Paola Carreca ◽  
Giandomenico Amico ◽  
...  

The secretion of potential therapeutic factors by mesenchymal stem cells (MSCs) has aroused much interest given the benefits that it can bring in the field of regenerative medicine. Indeed, the in vitro multipotency of these cells and the secretive capacity of both angiogenic and immunomodulatory factors suggest a role in tissue repair and regeneration. However, during culture, MSCs rapidly lose the expression of key transcription factors associated with multipotency and self-renewal, as well as the ability to produce functional paracrine factors. In our study, we show that a three-dimensional (3D) culture method is effective to induce MSC spheroid formation, to maintain the multipotency and to improve the paracrine activity of a specific population of human amnion-derived MSCs (hAMSCs). The regenerative potential of both 3D culture-derived conditioned medium (3D CM) and their exosomes (EXO) was assessed against 2D culture products. In particular, tubulogenesis assays revealed increased capillary maturation in the presence of 3D CM compared with both 2D CM and 2D EXO. Furthermore, 3D CM had a greater effect on inhibition of PBMC proliferation than both 2D CM and 2D EXO. To support this data, hAMSC spheroids kept in our 3D culture system remained viable and multipotent and secreted considerable amounts of both angiogenic and immunosuppressive factors, which were detected at lower levels in 2D cultures. This work reveals the placenta as an important source of MSCs that can be used for eventual clinical applications as cell-free therapies.


1999 ◽  
Vol 248 (2) ◽  
pp. 498-508 ◽  
Author(s):  
Masafumi Kuzuya ◽  
Shosuke Satake ◽  
Miguel A. Ramos ◽  
Shigeru Kanda ◽  
Teruhiko Koike ◽  
...  

Burns ◽  
2009 ◽  
Vol 35 (5) ◽  
pp. 701-706 ◽  
Author(s):  
Cesar Isaac ◽  
Mônica Beatriz Mathor ◽  
Giovani Bariani ◽  
André Oliveira Paggiaro ◽  
Marisa Roma Herson ◽  
...  

1993 ◽  
Vol 29 (2) ◽  
pp. 100-104
Author(s):  
R. Beaupain ◽  
C. Mainguené ◽  
D. Brouty-Boyé ◽  
P. Planchon ◽  
V. Magnien

2018 ◽  
Vol 17 (4) ◽  
pp. 403-410 ◽  
Author(s):  
Khalid Iqbal ◽  
Geoffrey S. Ibbott ◽  
Ryan G. Lafratta ◽  
Kent A. Gifford ◽  
Muhammad Akram ◽  
...  

AbstractPurposeTo determine the feasibility of an anthropomorphic breast polyurethane-based three-dimensional (3D) dosimeter with cavity to measure dose distributions and skin dose for a commercial strut-based applicator strut-adjusted volume implant (SAVI™) 6–1.Materials and methodsAn anthropomorphic breast 3D dosimeter was created with a cavity to accommodate the SAVI™ strut-based device. 2 Gy was prescribed to the breast dosimeter having D95 to planning target volume evaluation (PTV_EVAL) while limiting 125% of the prescribed dose to the skin. Independent dose distribution verification was performed with GAFCHROMIC® EBT2 film. The dose distribution from the 3D dosimeter was compared to the distributions from commercial brachytherapy treatment planning system (TPS) and film. Point skin doses, line profiles and dose–volume histogram (DVHs) for the skin and PTV_EVAL were compared.ResultsThe maximum difference in skin dose for TPS and the 3D dosimeter was 4% whereas 41% between the TPS and EBT2 film. The maximum dose difference for line profiles between TPS, 3D dosimeter, and film was 4·1%. DVHs of skin and PTV_EVAL for TPS and 3D dosimeter differed by a maximum of 4% at 5 mm depth and skin differed by a maximum 1·5% between TPS and 3D dosimeter. The criterion for gamma analysis comparison was 92·5% at ±5%±3 mm criterion. The TPS demonstrated at least ±5% comparability in predicting dose to the skin, PTV_EVAL and normal breast tissue.Conclusions3D anthropomorphic polyurethane dosimeter with cavity gives comparable results to the TPS dose predictions and GAFCHROMIC® EBT2 film results in the context of HDR brachytherapy.


1998 ◽  
Vol 244 (3) ◽  
pp. 642-646 ◽  
Author(s):  
Shosuke Satake ◽  
Masafumi Kuzuya ◽  
Miguel A. Ramos ◽  
Shigeru Kanda ◽  
Akihisa Iguchi

1992 ◽  
Vol 12 (6) ◽  
pp. 669-674 ◽  
Author(s):  
Peter B. Noble ◽  
Edward D. Shields ◽  
Peter D. M. Blecher ◽  
Kenneth C. Bentley

1997 ◽  
Vol 136 (2) ◽  
pp. 473-483 ◽  
Author(s):  
Jiahua Xu ◽  
Richard A.F. Clark

A three-dimensional collagen lattice can provide skin fibroblasts with a cell culture environment that simulates normal dermis. Such a collagen matrix environment regulates interstitial collagenase (type I metalloproteinase [MMP-1], collagenase-1) and collagen receptor α2 subunit mRNA expression in both unstimulated or platelet-derived growth factor–stimulated dermal fibroblasts (Xu, J., and R.A.F. Clark. 1996. J. Cell Biol. 132:239–249). Here we report that the collagen gel can signal protein kinase C (PKC)-ζ activation in human dermal fibroblasts. An in vitro kinase assay demonstrated that autophosphorylation of PKC-ζ immunoprecipitates was markedly increased by a collagen matrix. In contrast, no alteration in PKC-ζ protein levels or intracellular location was observed. DNA binding activity of nuclear factor κB (NF-κB), a downstream regulatory target of PKC-ζ, was also increased by fibroblasts grown in collagen gel. The composition of the NF-κB/Rel complexes that contained p50, was not changed. The potential role of PKC-ζ in collagen gel–induced mRNA expression of collagen receptor α2 subunit and human fibroblast MMP-1 was assessed by the following evidence. Increased levels of α2 and MMP-1 mRNA in collagen gel–stimulated fibroblasts were abrogated by bisindolylmaleimide GF 109203X and calphostin C, chemical inhibitors for PKC, but retained when cells were depleted of 12-myristate 13-acetate (PMA)–inducible PKC isoforms by 24 h of pretreatment with phorbol PMA. Antisense oligonucleotides complementary to the 5′ end of PKC-ζ mRNA sequences significantly reduced the collagen lattice–stimulated α2 and MMP-1 mRNA levels. Taken together, these data indicate that PKC-ζ, a PKC isoform not inducible by PMA or diacylglycerol, is a component of collagen matrix stimulatory pathway for α2 and MMP-1 mRNA expression. Thus, a three-dimensional collagen lattice maintains the dermal fibroblast phenotype, in part, through the activation of PKC-ζ.


Author(s):  
M Eastwood ◽  
D A McGrouther ◽  
R A Brown

The repair and maintenance of connective tissues is performed predominately by a mesenchymal cell known as a fibroblast. The activity of this cell is regulated, in part, by changes in the mechanical environment in which it resides. The authors have addressed some of the questions related to the fibroblast and how it responds to mechanical stimulation. An in vitro model, the ‘culture force monitor’, and its derivative, the tensioning culture force monitor have been developed enabling quantitative investigations to be performed on fibroblasts in a collagen lattice. Results have shown that a fibroblast can generate a force of approximately 10−10 N, as a result of change in cell shape and attachment, while in a three-dimensional collagen lattice. Application of a physiologically similar mechanical load has shown that fibroblasts have the ability to maintain a tensional homeostasis of approximately 40–60×10−5 N per million cells, change cellular morphology in a predictable manner and biochemically modify their resident environment.


Sign in / Sign up

Export Citation Format

Share Document