Brain aging and cardiovascular factors in HIV

AIDS ◽  
2022 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
David Jakabek ◽  
Caroline D. Rae ◽  
Bruce J. Brew ◽  
Lucette A. Cysique
Keyword(s):  
GeroPsych ◽  
2012 ◽  
Vol 25 (4) ◽  
pp. 235-245 ◽  
Author(s):  
Katja Franke ◽  
Christian Gaser

We recently proposed a novel method that aggregates the multidimensional aging pattern across the brain to a single value. This method proved to provide stable and reliable estimates of brain aging – even across different scanners. While investigating longitudinal changes in BrainAGE in about 400 elderly subjects, we discovered that patients with Alzheimer’s disease and subjects who had converted to AD within 3 years showed accelerated brain atrophy by +6 years at baseline. An additional increase in BrainAGE accumulated to a score of about +9 years during follow-up. Accelerated brain aging was related to prospective cognitive decline and disease severity. In conclusion, the BrainAGE framework indicates discrepancies in brain aging and could thus serve as an indicator for cognitive functioning in the future.


2013 ◽  
Vol 19 (15) ◽  
pp. 2722-2727 ◽  
Author(s):  
Sergio Davinelli ◽  
Roberto Di Marco ◽  
Renata Bracale ◽  
Alessandro Quattrone ◽  
Davide Zella ◽  
...  

2020 ◽  
Vol 23 (5) ◽  
pp. 402-410 ◽  
Author(s):  
Lin-Zi Li ◽  
Shan-Shan Lei ◽  
Bo Li ◽  
Fu-Chen Zhou ◽  
Ye-Hui Chen ◽  
...  

Aim and Objective: The Dendrobium officinalis flower (DOF) is popular in China due to common belief in its anti-aging properties and positive effects on “nourish yin”. However, there have been relatively few confirmatory pharmacological experiments conducted to date. The aim of this work was to evaluate whether DOF has beneficial effects on learning and memory in senescent rats, and, if so, to determine its potential mechanism of effect. Materials and Methods: SD rats were administrated orally DOF at a dose of 1.38, or 0.46 g/kg once a day for 8 weeks. Two other groups included a healthy untreated control group and a senescent control group. During the 7th week, a Morris water maze test was performed to assess learning and memory. At the end of the experiment, serum and brain samples were collected to measure concentrations of antioxidant enzymes, including malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GSH-Px) in serum, and the neurotransmitters, including γ-aminobutyric acid (γ-GABA), Glutamic (Glu), and monoamine oxidase B (MAO-B) in the brain. Histopathology of the hippocampus was assessed using hematoxylin-eosin (H&E) staining. Results: The results suggested that treatment with DOF improved learning as measured by escape latency, total distance, and target quadrant time, and also increased levels of γ-GABA in the brain. In addition, DOF decreased the levels of MDA, Glu, and MAO-B, and improved SOD and GSHPx. Histopathological analysis showed that DOF also significantly reduced structural lesions and neurodegeneration in the hippocampus relative to untreated senescent rats. Conclusion: DOF alleviated brain aging and improved the spatial learning abilities in senescent rats, potentially by attenuating oxidative stress and thus reducing hippocampal damage and balancing the release of neurotransmitters.


The prevalence of cognitive impairment caused by neurodegenerative diseases and other neurologic disorders associated with aging is expected to rise dramatically between now and year 2050, when the population of Americans aged 65 or older will nearly double. Cognitive impairment also commonly occurs in other neurologic conditions, as well as in non-neurologic medical disorders (and their treatments), idiopathic psychiatric illnesses, and adult neurodevelopmental disorders. Cognitive impairment can thus infiltrate all aspects of healthcare, making it necessary for clinicians and clinical researchers to have an integrated knowledge of the spectrum of adult cognitive disorders. The Oxford Handbook of Adult Cognitive Disorders is meant to serve as an up-to-date, scholarly, and comprehensive volume covering most diseases, conditions, and injuries resulting in impairments in cognitive function in adults. Topics covered include normal cognitive and brain aging, the impact of medical disorders (e.g., cardiovascular, liver, pulmonary) and psychiatric illnesses (e.g., depression and bipolar disorder) on cognitive function, adult neurodevelopmental disorders (e.g., Down Syndrome, Attention Deficit/Hyperactivity Disorder), as well as the various neurological conditions (e.g., Alzheimer’s disease, chronic traumatic encephalopathy, concussion). A section of the Handbook is also dedicated to unique perspectives and special considerations for the clinicians and clinical researchers, covering topics such as cognitive reserve, genetics, diversity, and neuroethics. The target audience of this Handbook includes: (1) clinicians, particularly psychologists, neuropsychologists, neurologists (including behavioral and cognitive neurologists), geriatricians, and psychiatrists (including neuropsychiatrists), who provide clinical care and management for adults with a diverse range of cognitive disorders; (2) clinical researchers who investigate cognitive outcomes and functioning in adult populations; and (3) graduate level students and post-doctoral trainees studying psychology, clinical neuroscience, and various medical specialties.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1256
Author(s):  
Ivan Y. Iourov ◽  
Yuri B. Yurov ◽  
Svetlana G. Vorsanova ◽  
Sergei I. Kutsev

Chromosome instability (CIN) has been repeatedly associated with aging and progeroid phenotypes. Moreover, brain-specific CIN seems to be an important element of pathogenic cascades leading to neurodegeneration in late adulthood. Alternatively, CIN and aneuploidy (chromosomal loss/gain) syndromes exhibit accelerated aging phenotypes. Molecularly, cellular senescence, which seems to be mediated by CIN and aneuploidy, is likely to contribute to brain aging in health and disease. However, there is no consensus about the occurrence of CIN in the aging brain. As a result, the role of CIN/somatic aneuploidy in normal and pathological brain aging is a matter of debate. Still, taking into account the effects of CIN on cellular homeostasis, the possibility of involvement in brain aging is highly likely. More importantly, the CIN contribution to neuronal cell death may be responsible for neurodegeneration and the aging-related deterioration of the brain. The loss of CIN-affected neurons probably underlies the contradiction between reports addressing ontogenetic changes of karyotypes within the aged brain. In future studies, the combination of single-cell visualization and whole-genome techniques with systems biology methods would certainly define the intrinsic role of CIN in the aging of the normal and diseased brain.


Sign in / Sign up

Export Citation Format

Share Document