Longitudinal Changes in Individual BrainAGE in Healthy Aging, Mild Cognitive Impairment, and Alzheimer’s Disease

GeroPsych ◽  
2012 ◽  
Vol 25 (4) ◽  
pp. 235-245 ◽  
Author(s):  
Katja Franke ◽  
Christian Gaser

We recently proposed a novel method that aggregates the multidimensional aging pattern across the brain to a single value. This method proved to provide stable and reliable estimates of brain aging – even across different scanners. While investigating longitudinal changes in BrainAGE in about 400 elderly subjects, we discovered that patients with Alzheimer’s disease and subjects who had converted to AD within 3 years showed accelerated brain atrophy by +6 years at baseline. An additional increase in BrainAGE accumulated to a score of about +9 years during follow-up. Accelerated brain aging was related to prospective cognitive decline and disease severity. In conclusion, the BrainAGE framework indicates discrepancies in brain aging and could thus serve as an indicator for cognitive functioning in the future.

2021 ◽  
Vol 12 ◽  
Author(s):  
Rui Zheng ◽  
Yang-mei Huang ◽  
Qiang Zhou

Recent studies have revealed significant contributions of lymphatic vessels (LVs) to vital functions of the brain, especially related to clearance of waste from the brain and immune responses in the brain. These studies collectively indicate that enhancing the functions of LVs may improve brain functions during brain aging and in Alzheimer’s disease (AD) where LV functions are impaired. However, it is currently unknown whether this enhancement can be achieved using small molecules. We have previously shown that a widely used Chinese herbal medicine Xueshuantong (XST) significantly improves functions and reduces pathology in AD transgenic mice associated with elevated cerebral blood flow (CBF). Here, we show that XST partially rescues deficits in lymphatic structures, improves clearance of amyloid-β (Aβ) from the brain, and reduces the inflammatory responses in the serum and brains of transgenic AD mice. In addition, we showed that this improvement in the lymphatic system occurs independently of elevated CBF, suggesting independent modulation and limited interaction between blood circulation and lymphatic systems. Moreover, XST treatment leads to a significant increase in GLT-1 level and a significantly lower level of MMP-9 and restores AQP4 polarity in APP/PS1 mice. These results provide the basis for further exploration of XST to enhance or restore LV functions, which may be beneficial to treat neurodegenerative diseases or promote healthy aging.


2021 ◽  
Vol 13 ◽  
Author(s):  
Shouneng Peng ◽  
Lu Zeng ◽  
Jean-Vianney Haure-Mirande ◽  
Minghui Wang ◽  
Derek M. Huffman ◽  
...  

Aging is a major risk factor for late-onset Alzheimer’s disease (LOAD). How aging contributes to the development of LOAD remains elusive. In this study, we examined multiple large-scale transcriptomic datasets from both normal aging and LOAD brains to understand the molecular interconnection between aging and LOAD. We found that shared gene expression changes between aging and LOAD are mostly seen in the hippocampal and several cortical regions. In the hippocampus, the expression of phosphoprotein, alternative splicing and cytoskeleton genes are commonly changed in both aging and AD, while synapse, ion transport, and synaptic vesicle genes are commonly down-regulated. Aging-specific changes are associated with acetylation and methylation, while LOAD-specific changes are more related to glycoprotein (both up- and down-regulations), inflammatory response (up-regulation), myelin sheath and lipoprotein (down-regulation). We also found that normal aging brain transcriptomes from relatively young donors (45–70 years old) clustered into several subgroups and some subgroups showed gene expression changes highly similar to those seen in LOAD brains. Using brain transcriptomic datasets from another cohort of older individuals (>70 years), we found that samples from cognitively normal older individuals clustered with the “healthy aging” subgroup while AD samples mainly clustered with the “AD similar” subgroups. This may imply that individuals in the healthy aging subgroup will likely remain cognitively normal when they become older and vice versa. In summary, our results suggest that on the transcriptome level, aging and LOAD have strong interconnections in some brain regions in a subpopulation of cognitively normal aging individuals. This supports the theory that the initiation of LOAD occurs decades earlier than the manifestation of clinical phenotype and it may be essential to closely study the “normal brain aging” to identify the very early molecular events that may lead to LOAD development.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Artur F. Schuh ◽  
Carlos M. Rieder ◽  
Liara Rizzi ◽  
Márcia Chaves ◽  
Matheus Roriz-Cruz

Insulin and IGF seem to be important players in modulating brain aging. Neurons share more similarities with islet cells than any other human cell type. Insulin and insulin receptors are diffusely found in the brain, especially so in the hippocampus. Caloric restriction decreases insulin resistance, and it is the only proven mechanism to expand lifespan. Conversely, insulin resistance increases with age, obesity, and sedentarism, all of which have been shown to be risk factors for late-onset Alzheimer's disease (AD). Hyperphagia and obesity potentiate the production of oxidative reactive species (ROS), and chronic hyperglycemia accelerates the formation of advanced glucose end products (AGEs) in (pre)diabetes—both mechanisms favoring a neurodegenerative milieu. Prolonged high cerebral insulin concentrations cause microvascular endothelium proliferation, chronic hypoperfusion, and energy deficit, triggering β-amyloid oligomerization and tau hyperphosphorylation. Insulin-degrading enzyme (IDE) seems to be the main mechanism in clearing β-amyloid from the brain. Hyperinsulinemic states may deviate IDE utilization towards insulin processing, decreasing β-amyloid degradation.


2022 ◽  
Author(s):  
Fernanda Hansen Pacheco de Moraes ◽  
Felipe Sudo ◽  
Marina Monteiro Carneiro ◽  
Bruno R. P. de Melo ◽  
Paulo Mattos ◽  
...  

This manuscript presents a study with recruited volunteers that comprehends three sorts of events present in Alzheimer's Disease (AD) evolution (structural, biochemical, and cognitive) to propose an update in neurodegeneration biomarkers for AD. The novel variables, K, I, and S, suggested based on physics properties and empirical evidence, are defined by power-law relations between cortical thickness, exposed and total area, and natural descriptors of brain morphology. Our central hypothesis is that variable K, almost constant in healthy human subjects, is a better discriminator of a diseased brain than the current morphological biomarker, Cortical Thickness, due to its aggregated information. We extracted morphological features from 3T MRI T1w images of 123 elderly subjects: 77 Healthy Cognitive Unimpaired Controls (CTL), 33 Mild Cognitive Impairment (MCI) patients, and 13 Alzheimer's Disease (AD) patients. Moreover, Cerebrospinal Fluid (CSF) biomarkers and clinical data scores were correlated with K, intending to characterize health and disease in the cortex with morphological criteria and cognitive-behavioral profiles. K distinguishes Alzheimer's Disease, Mild Cognitive Impairment, and Healthy Cognitive Unimpaired Controls globally and locally with reasonable accuracy (CTL-AD, 0.82; CTL-MCI, 0.58). Correlations were found between global and local K associated with clinical behavioral data (executive function and memory assessments) and CSF biomarkers (t-Tau, Aβ-40, and Aβ-42). The results suggest that the cortical folding component, K, is a premature discriminator of healthy aging, Mild Cognitive Impairment, and Alzheimer's Disease, with significant differences within diagnostics. Despite the non-concomitant events, we found correlations between brain structural degeneration (K), cognitive tasks, and biochemical markers.


2021 ◽  
Vol 7 ◽  
Author(s):  
Yunyan Xie ◽  
Qin Yang ◽  
Chunhua Liu ◽  
Qi Zhang ◽  
Jiehui Jiang ◽  
...  

The aim of this study was to determine a pattern associated with longitudinal changes of β-amyloid (Aβ) deposition during cognitively normal(CN) healthy aging. We used 18F-florbetapir (AV-45) PET images of the brains of 207 cognitively normal subjects (CN1), obtained through the Alzheimer's Disease Neuroimaging Initiative (ADNI), to identify the healthy aging pattern and 76 cognitively normal healthy subjects (CN2), obtained through the Xuanwu Hospital of Capital Medical University, Beijing, China, to verify it. A voxel-based correlation analysis of standardized uptake value ratio (SUVR) map image and age was conducted using the DPABI (Data Processing & Analysis of Brain Imaging) software to identify the pattern. The sum of squares due to errors (SSE), R-square (R2) and the root-mean-square error (RMSE) were calculated to assess the quality of curve fitting. Among them, R2 was proposed as the coherence coefficient, which was as an index to assess the correlation between SUVR value of the pattern and subjects' age. The pattern characterized by age-associated longitudinal changes of Aβ deposition was mainly distributed in the right middle and inferior temporal gyrus, the right temporal pole: middle temporal gyrus, the right inferior occipital gyrus, the right inferior frontal gyrus (triangular portion), and the right precentral gyrus. There were a significant positive correlation between the SUVR value of the pattern and age for each CN group (CN1: R2 = 0.120, p < 0.001 for quadratic model; CN2: R2 = 0.152, p = 0.002 for quadratic model). These findings suggest a pattern of changes in Aβ deposition that can be used to distinguish physiological changes from pathophysiological changes, constituting a new method for elucidating the neuropathological mechanism of Alzheimer's disease.


2002 ◽  
Vol 33 (2) ◽  
pp. 86-92 ◽  
Author(s):  
Mitsuru Kikuchi ◽  
Yuji Wada ◽  
Yoshifumi Koshino

In order to investigate whether Alzheimer's disease (AD) is the end result of aging of the brain or the result of some other mechanism, we analyzed EEGs showing the absolute power of harmonic responses to photic stimulation (PS) in younger subjects, non-demented elderly subjects and AD patients. At rest, the AD patients generally showed less absolute power than the younger and elderly subjects, with significant differences found at 10Hz and 20Hz. Analysis of EEGs recorded during PS indicated that the elderly subjects generally demonstrated more absolute power than the younger subjects and AD patients. These findings suggest a failure of stimulation-related brain activation in AD patients, and provide further evidence that normal aging and AD employ different mechanisms for functional organization during PS.


2014 ◽  
Vol 27 (1) ◽  
pp. 95-102 ◽  
Author(s):  
Asmus Vogel ◽  
Frans Boch Waldorff ◽  
Gunhild Waldemar

ABSTRACTBackground:Longitudinal changes in awareness in dementia have been studied with short follow-up time and mostly in small patient groups (including patients with moderate dementia). We investigated awareness in patients with mild Alzheimer's disease (AD) over 36 months and studied if a decline in awareness was associated with decline in cognition and increase in neuropsychiatric symptoms.Methods:Awareness was measured on a categorical scale in 95 AD patients (age ≥50 years, Mini-Mental State Examination (MMSE) score ≥20). Awareness was rated at three time points (follow-up at 12 and 36 months) where MMSE, Neuropsychiatric Inventory (NPI-Q), and Cornell scale for Depression in Dementia also were applied.Results:At 12 months, 26% had lower awareness rating as compared to baseline and at 36 months lower awareness ratings were found in 39%. At both visits, 16% had higher awareness rating as compared to baseline. Patients with lower awareness at 36 months as compared to baseline had a more rapid increase in NPI-Q score (p = 0.002) over 36 months as compared to patients with stable or improved awareness over 36 months. A more rapid decline in MMSE score was observed for patients with lower awareness at 36 months (as compared to baseline) but only when compared to patients in whom awareness improved over time.Conclusions:The results show essentially no clear relationship between cognitive decline over three years and awareness. In some cases, awareness remained stable or even improved despite significant cognitive decline. In the subgroup where awareness declined over time, overall ratings of neuropsychiatric symptoms declined more rapidly than in the remaining patients.


2009 ◽  
Vol 40 (1) ◽  
pp. 135-145 ◽  
Author(s):  
B. Schmand ◽  
H. M. Huizenga ◽  
W. A. van Gool

BackgroundAbnormal levels of biomarkers in cerebrospinal fluid (CSF) and atrophy of medial temporal lobe (MTL) structures on magnetic resonance imaging (MRI) are being used increasingly to diagnose early Alzheimer's disease (AD). We evaluated the claim that these biomarkers can detect preclinical AD before behavioural (i.e. memory) symptoms arise.MethodWe included all relevant longitudinal studies of CSF and MRI biomarkers published between January 2003 and November 2008. Subjects were not demented at baseline but some declined to mild cognitive impairment (MCI) or to AD during follow-up. Measures of tau and beta-amyloid in CSF, MTL atrophy on MRI, and performance on delayed memory tasks were extracted from the papers or obtained from the investigators.ResultsTwenty-one MRI studies and 14 CSF studies were retrieved. The effect sizes of total tau (t-tau), phosphorylated tau (p-tau) and amyloid beta 42 (aβ42) ranged from 0.91 to 1.11. The effect size of MTL atrophy was 0.75. Memory performance had an effect size of 1.06. MTL atrophy and memory impairment tended to increase when assessed closer to the moment of diagnosis, whereas effect sizes of CSF biomarkers tended to increase when assessed longer before the diagnosis.ConclusionsMemory impairment is a more accurate predictor of early AD than atrophy of MTL on MRI, whereas CSF abnormalities and memory impairment are about equally predictive. Consequently, the CSF and MRI biomarkers are not very sensitive to preclinical AD. CSF markers remain promising, but studies with long follow-up periods in elderly subjects who are normal at baseline are needed to evaluate this promise.


2020 ◽  
Author(s):  
Mark Sanderson-Cimino ◽  
Jeremy A. Elman ◽  
Xin M. Tu ◽  
Alden L. Gross ◽  
Matthew S. Panizzon ◽  
...  

AbstractObjectivePractice effects on cognitive tests obscure decline, thereby delaying detection of mild cognitive impairment (MCI). This reduces opportunities for slowing Alzheimer’s disease progression and can hinder clinical trials. Using a novel method, we assessed the ability of practice-effect-adjusted diagnoses to detect MCI earlier, and tested the validity of these diagnoses based on AD biomarkers.MethodsOf 889 Alzheimer’s Disease Neuroimaging Initiative participants who were cognitively normal (CN) at baseline, 722 returned at 1-year-follow-up (mean age=74.9±6.8). Practice effects were calculated by comparing returnee scores at follow-up to demographically-matched individuals who had only taken the tests once, with an additional adjustment for attrition effects. Practice effects for each test were subtracted from follow-up scores. The lower scores put additional individuals below the impairment threshold for MCI. CSF amyloid-beta, phosphorylated tau, and total tau were measured at baseline and used for criterion validation.ResultsPractice-effect-adjusted scores increased MCI incidence by 26% (p<.001). Adjustment increased proportions of amyloid-positive MCI cases (+20%) and reduced proportions of amyloid-positive CNs (−6%) (ps<.007). With the increased MCI base rate, adjustment for practice effects would reduce the sample size needed for detecting significant drug treatment effects by an average of 21%, which we demonstrate would result in multi-million-dollar savings in a clinical trial.InterpretationAdjusting for practice effects on cognitive testing leads to earlier detection of MCI. When MCI is an outcome, this reduces recruitment needed for clinical trials, study duration, staff and participant burden, and can dramatically lower costs. Importantly, biomarker evidence also indicates improved diagnostic accuracy.


Sign in / Sign up

Export Citation Format

Share Document