Pediatric-Specific Midfacial Fracture Patterns and Management

2020 ◽  
Vol 31 (3) ◽  
pp. e312-e315
Author(s):  
Kou Fujisawa ◽  
Ayumi Suzuki ◽  
Tomomi Yamakawa ◽  
Fumio Onishi ◽  
Toshiharu Minabe
2018 ◽  
Vol 1 (2) ◽  
pp. 5
Author(s):  
Shankar Gopinat

Acute cervical facet fractures are increasingly being detected due to the use of cervical spine CT imaging in the initial assessment of trauma patients. For displaced cervical facet fractures with dislocations and subluxations, early surgery can decompress the spinal cord and stabilize the spine. For patients with non-displaced cervical facet fractures, the challenge in managing these patients is the determination of spinal stability. Although many of the patients with non-displaced cervical facet fractures can be managed with a cervical collar, the imaging needs to be analyzed carefully since certain fracture patterns may be better managed with early surgical stabilization.


2021 ◽  
Vol 11 (6) ◽  
pp. 2484
Author(s):  
Zhou Lei ◽  
Esteban Rougier ◽  
Earl E. Knight ◽  
Mengyan Zang ◽  
Antonio Munjiza

A driving technical concern for the automobile industry is their assurance that developed windshield products meet Federal safety standards. Besides conducting innumerable glass breakage experiments, product developers also have the option of utilizing numerical approaches that can provide further insight into glass impact breakage, fracture, and fragmentation. The combined finite-discrete element method (FDEM) is one such tool and was used in this study to investigate 3D impact glass fracture processes. To enable this analysis, a generalized traction-separation model, which defines the constitutive relationship between the traction and separation in FDEM cohesive zone models, was introduced. The mechanical responses of a laminated glass and a glass plate under impact were then analyzed. For laminated glass, an impact fracture process was investigated and results were compared against corresponding experiments. Correspondingly, two glass plate impact fracture patterns, i.e., concentric fractures and radial fractures, were simulated. The results show that for both cases, FDEM simulated fracture processes and fracture patterns are in good agreement with the experimental observations. The work demonstrates that FDEM is an effective tool for modeling of fracture and fragmentation in glass.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2531
Author(s):  
Rodion Kopitzky

Sugar beet pulp (SBP) is a residue available in large quantities from the sugar industry, and can serve as a cost-effective bio-based and biodegradable filler for fully bio-based compounds based on bio-based polyesters. The heterogeneous cell structure of sugar beet suggests that the processing of SBP can affect the properties of the composite. An “Ultra-Rotor” type air turbulence mill was used to produce SBP particles of different sizes. These particles were processed in a twin-screw extruder with poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) and fillers to granules for possible marketable formulations. Different screw designs, compatibilizers and the use of glycerol as a thermoplasticization agent for SBP were also tested. The spherical, cubic, or ellipsoidal-like shaped particles of SBP are not suitable for usage as a fiber-like reinforcement. In addition, the fineness of ground SBP affects the mechanical properties because (i) a high proportion of polar surfaces leads to poor compatibility, and (ii) due to the inner structure of the particulate matter, the strength of the composite is limited to the cohesive strength of compressed sugar-cell compartments of the SBP. The compatibilization of the polymer–matrix–particle interface can be achieved by using compatibilizers of different types. Scanning electron microscopy (SEM) fracture patterns show that the compatibilization can lead to both well-bonded particles and cohesive fracture patterns in the matrix. Nevertheless, the mechanical properties are limited by the impact and elongation behavior. Therefore, the applications of SBP-based composites must be well considered.


Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ramy Khojaly ◽  
Ruairí Mac Niocaill ◽  
Muhammad Shahab ◽  
Matthew Nagle ◽  
Colm Taylor ◽  
...  

Abstract Background Postoperative management regimes vary following open reduction and internal fixation (ORIF) of unstable ankle fractures. There is an evolving understanding that extended periods of immobilisation and weight-bearing limitation may lead to poorer clinical outcomes. Traditional non-weight-bearing cast immobilisation may prevent loss of fixation, and this practice continues in many centres. The purpose of this trial is to investigate the safety and efficacy of immediate weight-bearing (IWB) and range of motion (ROM) exercise regimes following ORIF of unstable ankle fractures with a particular focus on functional outcomes and complication rates. Methods A pragmatic randomised controlled multicentre trial, comparing IWB in a walking boot and ROM within 24 h versus non-weight-bearing (NWB) and immobilisation in a cast for 6 weeks, following ORIF of all types of unstable adult ankle fractures (lateral malleolar, bimalleolar, trimalleolar with or without syndesmotic injury) is proposed. All patients presenting to three trauma units will be included. The exclusion criteria will be skeletal immaturity and tibial plafond fractures. The three institutional review boards have granted ethical approval. The primary outcome measure will be the functional Olerud-Molander Ankle Score (OMAS). Secondary outcomes include wound infection (deep and superficial), displacement of osteosynthesis, the full arc of ankle motion (plantar flexion and dorsal flection), RAND-36 Item Short Form Survey (SF-36) scoring, time to return to work and postoperative hospital length of stay. The trial will be reported in accordance with the CONSORT statement for reporting a pragmatic trial, and this protocol will follow the SPIRIT guidance. Discussion Traditional management of operatively treated ankle fractures includes an extended period of non-weight-bearing. There is emerging evidence that earlier weight-bearing may have equivocal outcomes and favourable patient satisfaction but higher wound-related complications. These studies often preclude more complicated fracture patterns or patient-related factors. To our knowledge, immediate weight-bearing (IWB) following ORIF of all types of unstable ankle fractures has not been investigated in a controlled prospective manner in recent decades. This pragmatic randomised-controlled multicentre trial will investigate immediate weight-bearing following ORIF of all ankle fracture patterns in the usual care condition. It is hoped that these results will contribute to the modern management of ankle fractures. Trial registration ISRCTN Registry ISRCTN76410775. Retrospectively registered on 30 June 2019.


1991 ◽  
Vol 27 (10) ◽  
pp. 2633-2643 ◽  
Author(s):  
Noelle E. Odling ◽  
Itzhak Webman
Keyword(s):  

2008 ◽  
Vol 22 (3) ◽  
pp. 176-182 ◽  
Author(s):  
David P Barei ◽  
Timothy J OʼMara ◽  
Lisa A Taitsman ◽  
Robert P Dunbar ◽  
Sean E Nork

Sign in / Sign up

Export Citation Format

Share Document