Reagents that block neuronal death from Huntington’s disease also curb oxidative stress

Neuroreport ◽  
2012 ◽  
Vol 23 (1) ◽  
pp. 10-15 ◽  
Author(s):  
Antonio Valencia ◽  
Ellen Sapp ◽  
Patrick B. Reeves ◽  
Jonathan Alexander ◽  
Nicholas Masso ◽  
...  
2002 ◽  
Vol 9 (9) ◽  
pp. 873-880 ◽  
Author(s):  
P G Mastroberardino ◽  
C Iannicola ◽  
R Nardacci ◽  
F Bernassola ◽  
V De Laurenzi ◽  
...  

2021 ◽  
Vol 14 (10) ◽  
pp. 1044
Author(s):  
Letizia Pruccoli ◽  
Carlo Breda ◽  
Gabriella Teti ◽  
Mirella Falconi ◽  
Flaviano Giorgini ◽  
...  

Huntington’s disease (HD) is a neurodegenerative disorder caused by an abnormal CAG trinucleotide repeat expansion within exon 1 of the huntingtin (HTT) gene. This mutation leads to the production of mutant HTT (mHTT) protein which triggers neuronal death through several mechanisms. Here, we investigated the neuroprotective effects of esculetin (ESC), a bioactive phenolic compound, in an inducible PC12 model and a transgenic Drosophila melanogaster model of HD, both of which express mHTT fragments. ESC partially inhibited the progression of mHTT aggregation and reduced neuronal death through its ability to counteract the oxidative stress and mitochondria impairment elicited by mHTT in the PC12 model. The ability of ESC to counteract neuronal death was also confirmed in the transgenic Drosophila model. Although ESC did not modify the lifespan of the transgenic Drosophila, it still seemed to have a positive impact on the HD phenotype of this model. Based on our findings, ESC may be further studied as a potential neuroprotective agent in a rodent transgenic model of HD.


Author(s):  
Ravi Ranjan Kumar ◽  
Lovekesh Singh ◽  
Amandeep Thakur ◽  
Shamsher Singh ◽  
Bhupinder Kumar

Background: Vitamins are the micronutrients required for boosting the immune system and managing any future infection. Vitamins are involved in neurogenesis, a defense mechanism working in neurons, metabolic reactions, neuronal survival, and neuronal transmission. Their deficiency leads to abnormal functions in the brain like oxidative stress, mitochondrial dysfunction, accumulation of proteins (synuclein, Aβ plaques), neurodegeneration, and excitotoxicity. Methods: In this review, we have compiled various reports collected from PubMed, Scholar Google, Research gate, and Science direct. The findings were evaluated, compiled, and represented in this manuscript. Conclusion: The deficiency of vitamins in the body causes various neurological disorders like Alzheimer’s disease, Parkinson’s disease, Huntington's disease, and depression. We have discussed the role of vitamins in neurological disorders and the normal human body. Depression is linked to a deficiency of vitamin-C and vitamin B. In the case of Alzheimer’s disease, there is a lack of vitamin-B1, B12, and vitamin-A, which results in Aβ-plaques. Similarly, in Parkinson’s disease, vitamin-D deficiency leads to a decrease in the level of dopamine, and imbalance in vitamin D leads to accumulation of synuclein. In MS, Vitamin-C and Vitamin-D deficiency causes demyelination of neurons. In Huntington's disease, vitamin- C deficiency decreases the antioxidant level, enhances oxidative stress, and disrupts the glucose cycle. Vitamin B5 deficiency in Huntington's disease disrupts the synthesis of acetylcholine and hormones in the brain.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Svetlana A. Ivanova ◽  
Anton J. M. Loonen

A serendipitous pharmacogenetic finding links the vulnerability to developing levodopa-induced dyskinesia to the age of onset of Huntington’s disease. Huntington’s disease is caused by a polyglutamate expansion of the protein huntingtin. Aberrant huntingtin is less capable of binding to a member of membrane-associated guanylate kinase family (MAGUKs): postsynaptic density- (PSD-) 95. This leaves more PSD-95 available to stabilize NR2B subunit carrying NMDA receptors in the synaptic membrane. This results in increased excitotoxicity for which particularly striatal medium spiny neurons from the indirect extrapyramidal pathway are sensitive. In Parkinson’s disease the sensitivity for excitotoxicity is related to increased oxidative stress due to genetically determined abnormal metabolism of dopamine or related products. This probably also increases the sensitivity of medium spiny neurons for exogenous levodopa. Particularly the combination of increased oxidative stress due to aberrant dopamine metabolism, increased vulnerability to NMDA induced excitotoxicity, and the particular sensitivity of indirect pathway medium spiny neurons for this excitotoxicity may explain the observed increased prevalence of levodopa-induced dyskinesia.


2019 ◽  
Vol 29 (2) ◽  
pp. 216-227
Author(s):  
Sheridan L Roberts ◽  
Tracey Evans ◽  
Yi Yang ◽  
Yuhua Fu ◽  
Robert W Button ◽  
...  

Abstract Huntington’s disease (HD) is a neurodegenerative disorder caused by an expanded polyglutamine tract in the huntingtin (HTT) protein. Mutant HTT (mHTT) toxicity is caused by its aggregation/oligomerization. The striatum is the most vulnerable region, although all brain regions undergo neuronal degeneration in the disease. Here we show that the levels of Bim, a BH3-only protein, are significantly increased in HD human post-mortem and HD mouse striata, correlating with neuronal death. Bim reduction ameliorates mHTT neurotoxicity in HD cells. In the HD mouse model, heterozygous Bim knockout significantly mitigates mHTT accumulation and neuronal death, ameliorating disease-associated phenotypes and lifespan. Therefore, Bim could contribute to the progression of HD.


2015 ◽  
Vol 89 ◽  
pp. 1085-1096 ◽  
Author(s):  
Adriana Covarrubias-Pinto ◽  
Pablo Moll ◽  
Macarena Solís-Maldonado ◽  
Aníbal I. Acuña ◽  
Andrea Riveros ◽  
...  

2016 ◽  
Vol 87 (Suppl 1) ◽  
pp. A16.3-A17
Author(s):  
Meera Purushottam ◽  
Sowmya Devatha Venkatesh ◽  
Nikhil Ratna ◽  
Somdatta Sen ◽  
Lakshminarayanan Kota ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document