scholarly journals Sex-specific visual performance: female lizards outperform males in motion detection

2009 ◽  
Vol 5 (6) ◽  
pp. 732-734 ◽  
Author(s):  
Saúl S. Nava ◽  
Mirela Conway ◽  
Emília P. Martins

In animal communication, complex displays usually have multiple functions and, male and female receivers often differ in their utilization and response to different aspects of these displays. The perceptual variability hypothesis suggests that different aspects of complex signals differ in their ability to be detected and processed by different receivers. Here, we tested whether receiver male and female Sceloporus graciosus lizards differ in visual motion detection by measuring the latency to the visual grasp response to a motion stimulus. We demonstrate that in lizards that largely exhibit complex motions as courtship signals, female lizards are faster than males at visually detecting motion. These results highlight that differential signal utilization by the sexes may be driven by variability in the capacity to detect different display properties.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Martha M. Shiell ◽  
François Champoux ◽  
Robert J. Zatorre

After sensory loss, the deprived cortex can reorganize to process information from the remaining modalities, a phenomenon known as cross-modal reorganization. In blind people this cross-modal processing supports compensatory behavioural enhancements in the nondeprived modalities. Deaf people also show some compensatory visual enhancements, but a direct relationship between these abilities and cross-modally reorganized auditory cortex has only been established in an animal model, the congenitally deaf cat, and not in humans. Using T1-weighted magnetic resonance imaging, we measured cortical thickness in the planum temporale, Heschl’s gyrus and sulcus, the middle temporal area MT+, and the calcarine sulcus, in early-deaf persons. We tested for a correlation between this measure and visual motion detection thresholds, a visual function where deaf people show enhancements as compared to hearing. We found that the cortical thickness of a region in the right hemisphere planum temporale, typically an auditory region, was greater in deaf individuals with better visual motion detection thresholds. This same region has previously been implicated in functional imaging studies as important for functional reorganization. The structure-behaviour correlation observed here demonstrates this area’s involvement in compensatory vision and indicates an anatomical correlate, increased cortical thickness, of cross-modal plasticity.


2020 ◽  
Author(s):  
Maria-Bianca Leonte ◽  
Aljoscha Leonhardt ◽  
Alexander Borst ◽  
Alex S. Mauss

AbstractVisual motion detection is among the best understood neuronal computations. One assumed behavioural role is to detect self-motion and to counteract involuntary course deviations, extensively investigated in tethered walking or flying flies. In free flight, however, any deviation from a straight course is signalled by both the visual system as well as by proprioceptive mechanoreceptors called ‘halteres’, which are the equivalent of the vestibular system in vertebrates. Therefore, it is yet unclear to what extent motion vision contributes to course control, or whether straight flight is completely controlled by proprioceptive feedback from the halteres. To answer these questions, we genetically rendered flies motion-blind by blocking their primary motion-sensitive neurons and quantified their free-flight performance. We found that such flies have difficulties maintaining a straight flight trajectory, much like control flies in the dark. By unilateral wing clipping, we generated an asymmetry in propulsory force and tested the ability of flies to compensate for this perturbation. While wild-type flies showed a remarkable level of compensation, motion-blind animals exhibited pronounced circling behaviour. Our results therefore unequivocally demonstrate that motion vision is necessary to fly straight under realistic conditions.


2010 ◽  
Vol 6 (6) ◽  
pp. 572-572 ◽  
Author(s):  
M. Harasawa ◽  
A. Obata ◽  
T. Morita ◽  
T. Ito ◽  
T. Saito ◽  
...  

2015 ◽  
Vol 282 (1816) ◽  
pp. 20151574 ◽  
Author(s):  
Matthew R. Wilkins ◽  
Daizaburo Shizuka ◽  
Maxwell B. Joseph ◽  
Joanna K. Hubbard ◽  
Rebecca J. Safran

Complex signals, involving multiple components within and across modalities, are common in animal communication. However, decomposing complex signals into traits and their interactions remains a fundamental challenge for studies of phenotype evolution. We apply a novel phenotype network approach for studying complex signal evolution in the North American barn swallow ( Hirundo rustica erythrogaster ). We integrate model testing with correlation-based phenotype networks to infer the contributions of female mate choice and male–male competition to the evolution of barn swallow communication. Overall, the best predictors of mate choice were distinct from those for competition, while moderate functional overlap suggests males and females use some of the same traits to assess potential mates and rivals. We interpret model results in the context of a network of traits, and suggest this approach allows researchers a more nuanced view of trait clustering patterns that informs new hypotheses about the evolution of communication systems.


Author(s):  
Mathew T. Summers ◽  
Malak El Quessny ◽  
Maria B. Feller

Motion is a key feature of the sensory experience of visual animals. The mammalian retina has evolved a number of diverse motion sensors to detect and parse visual motion into behaviorally relevant neural signals. Extensive work has identified retinal outputs encoding directional and nondirectional motion, and the intermediate circuitry underlying this tuning. Detailed circuit mechanism investigation has established retinal direction selectivity in particular as a model system of neural computation.


2003 ◽  
Vol 90 (4) ◽  
pp. 2757-2762 ◽  
Author(s):  
Tatiana Pasternak ◽  
Daniel Zaksas

When asked to compare two moving stimuli separated by a delay, observers must not only identify stimulus direction but also store it in memory. We examined the properties of this storage mechanism in two macaque monkeys by sequentially presenting two random-dot stimuli, sample and test, in opposite hemifields and introducing a random-motion mask during the delay. The mask interfered with performance only at the precise location of the test, 100–200 ms after the start of the delay, and when its size and speed matched those of the remembered sample. This selective interference suggests that the representation of the motion stimulus in memory preserves its direction, speed, and size and is most fragile shortly after the completion of the encoding phase of the task. This precise preservation of sensory attributes of the motion stimulus suggests that the neural mechanisms involved in the processing of visual motion may also be involved in its storage.


Neuroforum ◽  
2018 ◽  
Vol 24 (2) ◽  
pp. A61-A72 ◽  
Author(s):  
Giordano Ramos-Traslosheros ◽  
Miriam Henning ◽  
Marion Silies

Abstract Many animals use visual motion cues to inform different behaviors. The basis for motion detection is the comparison of light signals over space and time. How a nervous system performs such spatiotemporal correlations has long been considered a paradigmatic neural computation. Here, we will first describe classical models of motion detection and introduce core motion detecting circuits in Drosophila. Direct measurements of the response properties of the first direction-selective cells in the Drosophila visual system have revealed new insights about the implementation of motion detection algorithms. Recent data suggest a combination of two mechanisms, a nonlinear enhancement of signals moving into the preferred direction, as well as a suppression of signals moving into the opposite direction. These findings as well as a functional analysis of the circuit components have shown that the microcircuits that process elementary motion are more complex than anticipated. Building on this, we have the opportunity to understand detailed properties of elementary, yet intricate microcircuits.


Sign in / Sign up

Export Citation Format

Share Document