scholarly journals Queen control of a key life-history event in a eusocial insect

2013 ◽  
Vol 9 (3) ◽  
pp. 20130056 ◽  
Author(s):  
Jacob G. Holland ◽  
Florian S. Guidat ◽  
Andrew F. G. Bourke

In eusocial insects, inclusive fitness theory predicts potential queen–worker conflict over the timing of events in colony life history. Whether queens or workers control the timing of these events is poorly understood. In the bumble-bee Bombus terrestris , queens exhibit a ‘switch point’ in which they switch from laying diploid eggs yielding females (workers and new queens) to laying haploid eggs yielding males. By rearing foundress queens whose worker offspring were removed as pupae and sexing their eggs using microsatellite genotyping, we found that queens kept in the complete absence of adult workers still exhibit a switch point. Moreover, the timing of their switch points relative to the start of egg-laying did not differ significantly from that of queens allowed to produce normal colonies. The finding that bumble-bee queens can express the switch point in the absence of workers experimentally demonstrates queen control of a key life-history event in eusocial insects. In addition, we found no evidence that workers affect the timing of the switch point either directly or indirectly via providing cues to queens, suggesting that workers do not fully express their interests in queen–worker conflicts over colony life history.

2013 ◽  
Vol 280 (1754) ◽  
pp. 20122637 ◽  
Author(s):  
Benjamin Bossan ◽  
Peter Hammerstein ◽  
Arnulf Koehncke

Parent–offspring conflict (POC) describes the evolutionary conflict between offspring and their parents over parental resource allocation. Offspring are expected to demand more resources than their parents are willing to supply because these offspring are more related to their own than to their siblings' offspring. Kin selection acts to limit these divergent interests. Our model departs from previous models by describing POC as an intragenomic conflict between genes determining life-history traits during infancy or parenthood. We explain why a direct fitness approach that measures the total fitness effect during exactly one generation is required to correctly assess POC in interbrood rivalry. We find that incorrect assumptions in previous models led to an overestimation of the scope of POC. Moreover, we show why the degree of monogamy is more important for POC than previously thought. Overall, we demonstrate that a life-history-centred intragenomic approach is necessary to correctly interpret POCs. We further discuss how our work relates to the current debate about the usefulness of inclusive fitness theory.


Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1008
Author(s):  
Huiyue Zhao ◽  
Yanjie Liu ◽  
Hong Zhang ◽  
Tom D. Breeze ◽  
Jiandong An

Queen-worker conflict over the reproduction of males exists in the majority of haplodiplioidy hymenpteran species such as bees, wasps, and ants, whose workers lose mating ability but can produce haploid males in colony. Bumblebee is one of the representatives of primitively eusocial insects with plastic division labor and belongs to monandrous and facultative low polyandry species that have reproductive totipotent workers, which are capable of competing with mother queen to produce haploid males in the queenright colony compared to higher eusocial species, e.g., honeybees. So, bumblebees should be a better material to study worker reproduction, but the reproductive characteristics of worker-born males (WMs) remain unclear. Here, we choose the best-studied bumblebee Bombus terrestris to evaluate the morphological characteristics and reproductive ability of WMs from the queenless micro-colonies. The sexually matured WMs showed smaller in forewing length and weight, relatively less sperm counts but equally high sperm viability in comparison with the queen-born males (QMs) of the queenright colony. Despite with smaller size, the WMs are able to successfully mate with the virgin queens in competition with the QMs under laboratory conditions, which is quite different from the honeybees reported. In addition, there was no difference in the colony development, including the traits such as egg-laying rate, colony establishment rate, and populations of offspring, between the WM- and the QM-mated queens. Our study highlights the equivalent reproductive ability of worker-born males compared to that of queens, which might exhibit a positive application or special use of bumblebee rearing, especially for species whose males are not enough for copulation. Further, our finding contributes new evidence to the kin selection theory and suggests worker reproduction might relate to the evolution of sociality in bees.


Behaviour ◽  
1988 ◽  
Vol 107 (3-4) ◽  
pp. 186-207 ◽  
Author(s):  
M.J. Duchateau ◽  
H.H.W. Velthuis

The development and the reproductive output of 26 Bombus terrestris colonies were investigated. Four important points in colony development are distinguished. These are: a) the start of egg laying by the queen, leading to the beginning of the eusocial phase, the emergence of the first workers; b) the moment which we term the switch point, at which the queen switches from laying diploid eggs (producing workers or queens) to the laying of haploid eggs (producing males); c) the onset of queen production reared from diploid eggs; d) the loss of dominance by the queen, expressed by the beginning of aggression on the part of queen and workers, worker oviposition, oophagy and the functional elimination of the queen. This we call the competition point. The onset of queen production is highly correlated with the competition point but not correlated with the switch point. The pattern in time of the egg laying by a queen differed from the rate of increase of worker numbers published by previous authors. After an initial and slow phase, in which two broods of egg cells are produced, the rate of egg laying of a queen becomes constant, whether or not the eggs are fertilized. The transformation from this rate of egg laying to the earlier descriptions of increase in number is only possible if one neglects differences between colonies in time spent in the production of the two broods as well as the highly variable time needed for development into adults. The time at which the competition point occurs is much more predictable (at day 30.8 ± 4.9 after the emergence of the first worker) than the switch point. The latter ranges from day 6 to day 32. In our colonies two groups can be discerned, one of early switching colonies (at day 9.8 ± 2.4), the other of late switching colonies (at day 23.4 ± 4.6). The occurrence of the switch cannot be predicted from preceding behavioural or demographic data. As a consequence of the early switch such colonies produce mainly males. Partly due to the unfavourable larva/worker ratio only a few queens were reared from the last laid diploid eggs. In contradiction the late switching colonies produce on average sexuals at a 1.3:1 sex ratio (1:1.7 investment ratio). Remarkable however, biomass of sexuals is equal in both types of colonies. Males are about half the weight of queens. Certain colonies invest in males only ("3 males : 0 queens"). Since the two types of colonies occurred in about equal numbers, our local population is characterized by a 4:1 1(♂:♀) sex ratio. This male biased sex ratio, also observed for other bumblebees species (B. terricola and B. melanopygus, OWEN et al., 1980; OWEN & PLOWRIGHT, 1982), contrasts with existing theoretical models based on kin selection (TRIVERS & HARE, 1976) or local mate competition (ALEXANDER & SHERMAN, 1977) arguments. A model is proposed in which the males of the early switching colonies monopolize the matings due to their early appearance in the field. In fact, the early switching colonies, by investing mainly in males, parasitize on the reproductive strategy of the late switching colonies, which are characterized by a 1:1 sex ratio. At population level the two reproductive strategies are in equilibrium at a 1:1 frequency.


2013 ◽  
Vol 368 (1613) ◽  
pp. 20120050 ◽  
Author(s):  
Jacobus J. Boomsma

Obligate eusociality with distinct caste phenotypes has evolved from strictly monogamous sub-social ancestors in ants, some bees, some wasps and some termites. This implies that no lineage reached the most advanced form of social breeding, unless helpers at the nest gained indirect fitness values via siblings that were identical to direct fitness via offspring. The complete lack of re-mating promiscuity equalizes sex-specific variances in reproductive success. Later, evolutionary developments towards multiple queen-mating retained lifetime commitment between sexual partners, but reduced male variance in reproductive success relative to female's, similar to the most advanced vertebrate cooperative breeders. Here, I (i) discuss some of the unique and highly peculiar mating system adaptations of eusocial insects; (ii) address ambiguities that remained after earlier reviews and extend the monogamy logic to the evolution of soldier castes; (iii) evaluate the evidence for indirect fitness benefits driving the dynamics of (in)vertebrate cooperative breeding, while emphasizing the fundamental differences between obligate eusociality and cooperative breeding; (iv) infer that lifetime commitment is a major driver towards higher levels of organization in bodies, colonies and mutualisms. I argue that evolutionary informative definitions of social systems that separate direct and indirect fitness benefits facilitate transparency when testing inclusive fitness theory.


Author(s):  
Samir Okasha

Inclusive fitness theory, originally due to W. D. Hamilton, is a popular approach to the study of social evolution, but shrouded in controversy. The theory contains two distinct aspects: Hamilton’s rule (rB > C); and the idea that individuals will behave as if trying to maximize their inclusive fitness in social encounters. These two aspects of the theory are logically separable but often run together. A generalized version of Hamilton’s rule can be formulated that is always true, though whether it is causally meaningful is debatable. However, the individual maximization claim only holds true if the payoffs from the social encounter are additive. The notion that inclusive fitness is the ‘goal’ of individuals’ social behaviour is less robust than some of its advocates acknowledge.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marcel Mertes ◽  
Julie Carcaud ◽  
Jean-Christophe Sandoz

AbstractSociality is classified as one of the major transitions in evolution, with the largest number of eusocial species found in the insect order Hymenoptera, including the Apini (honey bees) and the Bombini (bumble bees). Bumble bees and honey bees not only differ in their social organization and foraging strategies, but comparative analyses of their genomes demonstrated that bumble bees have a slightly less diverse family of olfactory receptors than honey bees, suggesting that their olfactory abilities have adapted to different social and/or ecological conditions. However, unfortunately, no precise comparison of olfactory coding has been performed so far between honey bees and bumble bees, and little is known about the rules underlying olfactory coding in the bumble bee brain. In this study, we used in vivo calcium imaging to study olfactory coding of a panel of floral odorants in the antennal lobe of the bumble bee Bombus terrestris. Our results show that odorants induce reproducible neuronal activity in the bumble bee antennal lobe. Each odorant evokes a different glomerular activity pattern revealing this molecule’s chemical structure, i.e. its carbon chain length and functional group. In addition, pairwise similarity among odor representations are conserved in bumble bees and honey bees. This study thus suggests that bumble bees, like honey bees, are equipped to respond to odorants according to their chemical features.


Genetics ◽  
2007 ◽  
Vol 176 (3) ◽  
pp. 1375-1380
Author(s):  
Lee Alan Dugatkin

2014 ◽  
Vol 369 (1642) ◽  
pp. 20130365 ◽  
Author(s):  
Helen C. Leggett ◽  
Sam P. Brown ◽  
Sarah E. Reece

One of the most striking facts about parasites and microbial pathogens that has emerged in the fields of social evolution and disease ecology in the past few decades is that these simple organisms have complex social lives, indulging in a variety of cooperative, communicative and coordinated behaviours. These organisms have provided elegant experimental tests of the importance of relatedness, kin discrimination, cooperation and competition, in driving the evolution of social strategies. Here, we briefly review the social behaviours of parasites and microbial pathogens, including their contributions to virulence, and outline how inclusive fitness theory has helped to explain their evolution. We then take a mechanistically inspired ‘bottom-up’ approach, discussing how key aspects of the ways in which parasites and pathogens exploit hosts, namely public goods, mobile elements, phenotypic plasticity, spatial structure and multi-species interactions, contribute to the emergent properties of virulence and transmission. We argue that unravelling the complexities of within-host ecology is interesting in its own right, and also needs to be better incorporated into theoretical evolution studies if social behaviours are to be understood and used to control the spread and severity of infectious diseases.


Sign in / Sign up

Export Citation Format

Share Document