scholarly journals Cretaceous park of sex determination: sex chromosomes are conserved across iguanas

2014 ◽  
Vol 10 (3) ◽  
pp. 20131093 ◽  
Author(s):  
Michail Rovatsos ◽  
Martina Pokorná ◽  
Marie Altmanová ◽  
Lukáš Kratochvíl

Many poikilothermic vertebrate lineages, especially among amphibians and fishes, possess a rapid turnover of sex chromosomes, while in endotherms there is a notable stability of sex chromosomes. Reptiles in general exhibit variability in sex-determining systems; as typical poikilotherms, they might be expected to have a rapid turnover of sex chromosomes. However, molecular data which would enable the testing of the stability of sex chromosomes are lacking in most lineages. Here, we provide molecular evidence that sex chromosomes are highly conserved across iguanas, one of the most species-rich clade of reptiles. We demonstrate that members of the New World families Iguanidae, Tropiduridae, Leiocephalidae, Phrynosomatidae, Dactyloidae and Crotaphytidae, as well as of the family Opluridae which is restricted to Madagascar, all share homologous sex chromosomes. As our sampling represents the majority of the phylogenetic diversity of iguanas, the origin of iguana sex chromosomes can be traced back in history to the basal splitting of this group which occurred during the Cretaceous period. Iguanas thus show a stability of sex chromosomes comparable to mammals and birds and represent the group with the oldest sex chromosomes currently known among amniotic poikilothermic vertebrates.

2003 ◽  
Vol 60 (3) ◽  
pp. 425-447 ◽  
Author(s):  
M. MÖLLER ◽  
M. KIEHN

Our knowledge of cytological data published on members of the family Gesneriaceae is summarized and critically evaluated in the light of current taxonomic treatments and phylogenetic hypotheses. There are about 1000 published chromosome counts, covering 56% of the genera but only 18% of the species. In particular the New World tribes Beslerieae and Napeantheae and the Old World tribe Didymocarpeae are underexplored at generic level. In Gesneriaceae chromosome data are a valuable source of taxonomic characters. From our current knowledge of the phylogenetic relationships in the family we know that basic chromosome numbers in the New World subfamily Gesnerioideae appear to be rather conserved, but that a more complex pattern of genome evolution seems to be present among the Old World tribes. Both polyploidy and dysploid changes have played a significant role in the evolution of the family. However, the number of species for which both cytological and molecular data are available is at present too low to reach firm conclusions on ancestral basic chromosome numbers, particularly for the Old World group. To facilitate wider access to cytological data on the Gesneriaceae, a website has been developed (http://www.rbge.org.uk/rbge/web/search/index.jsp), which is introduced in this paper.


Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 892
Author(s):  
Zhen Liu ◽  
Sheng-Jie Yang ◽  
Yu-Yuan Wang ◽  
Yan-Qiong Peng ◽  
Hua-Yan Chen ◽  
...  

Species of the family Scoliidae are larval parasitoids of scarabaeoid beetles and pollinators of various plants. Despite their great importance in pest biological control and plant pollination, the taxonomy and systematics of these parasitoids are far from clear. Some species of the family are extremely morphologically similar and difficult to identify, especially in males. In this study, an integrative taxonomic approach, combining morphology and molecular data, was used to discriminate the species of Scoliidae from southern China. In total, 52 COI sequences belonging to 22 morphospecies of 9 genera in two tribes were obtained. The COI sequences worked well for the identification of all the studied species, with intraspecific genetic distances generally less than 2%, while interspecific distances ranged between 5.3% and 20.8%. The delimitations of the problematic species and subspecies of Scolia and Megacampsomeris are well solved by COI sequences, suggesting that DNA barcoding could be a useful identification tool for Scoliidae. Based on both morphological and molecular evidence, we discovered one undescribed cryptic species of the polytypic species Solia (Discolia) superciliaris Saussure, 1864, five newly recorded species, i.e., Scolia (Discolia) sikkimensis Bingham, 1896, Sericocampsomeris flavomaculata Gupta and Jonathan, 1989, Megacampsomeris asiatica (Saussure, 1858), Megacampsomeris pulchrivestita (Cameron, 1902) and Megacampsomeris shillongensis (Betrem, 1928) and one pending subspecies of Scolia (Discolia) watanabei (Matsumura, 1912) from China. Our study indicates that such an integrative approach, combing both molecular and morphological evidence, is a potent tool to tackle the taxonomic challenges in the family Scoliidae, or even, in other diverse groups of Aculeata, of which sexual dimorphism and cryptic species are common.


2019 ◽  
Vol 50 (5) ◽  
pp. 702-716 ◽  
Author(s):  
Veronica Pereyra ◽  
Adriano Cavalleri ◽  
Claudia Szumik ◽  
Christiane Weirauch

The New World family Heterothripidae (~90 spp., four genera) comprises flower-feeding and ectoparasitic thrips. The monophyly of the group has remained untested and species-level relationships were unknown. Morphological (123 characters) and molecular (28S rDNA D2 and D3-D5, H3, and partial COI) data were compiled to reconstruct phylogenetic relationships of this group. The ingroup was represented by 65 species of the four recognized Heterothripidae genera (Aulacothrips Hood, Heterothrips Hood, Lenkothrips De Santis & Sureda, and Scutothrips Stannard). The monophyly of Heterothripidae was recovered in the total evidence and molecular data only analyses with the ectoparasitic Aulacothrips placed as the sister group of the remaining Heterothripidae. The large genus Heterothrips (>80% of the species-level diversity), which was thoroughly sampled in our analyses (56 species), was recovered as paraphyletic with respect to Scutothrips and Lenkothrips. We conclude that additional morphological and molecular data would be desirable before revising the classification of Heterothripidae


Zootaxa ◽  
2020 ◽  
Vol 4869 (1) ◽  
pp. 149-150
Author(s):  
KAROL SZAWARYN ◽  
WIOLETTA TOMASZEWSKA

Recently the classification of the ladybird beetles’ tribe Epilachnini was revised based on morphological and molecular data (Szawaryn et al. 2015, Tomaszewska & Szawaryn 2016). Based on these findings a new classification of the tribe was proposed. The genus Epilachna Chevrolat in Dejean, 1837 sensu lato was split into several clades, with Epilachna sensu stricto limited to New World fauna, and one of the Afrotropical clades, formerly defined as Epilachna sahlbergi-group (Fürsch 1963), has been named Chazeauiana Tomaszewska & Szawaryn, 2015 (Szawaryn et al. 2015), with Epilachna sahlbergi Mulsant, 1850 as the type species. However, that taxon received an unnecessary replacement name, as Mulsant (1850) already described a subgenus of Epilachna named Cleta distributed in Afrotropics, with Epilachna eckloni Mulsant, 1850 as the type species, which also belongs to the E. sahlbergi-group. Consequently Cleta has been elevated to the genus level (Tomaszewska & Szawaryn 2016) and Chazeuiana was synonymized with Cleta as a junior synonym. Nonetheless, authors (Tomaszewska & Szawaryn 2016) were not aware that the name Cleta is preoccupied. It appeared that Duponchel (1845) established the genus Cleta in the family Geometridae (Lepidoptera) that makes Cleta Mulsant (1850) a junior homonym. Therefore, we propose here Afrocleta nom. nov. as a replacement name for Cleta Mulsant, 1850. 


Zootaxa ◽  
2011 ◽  
Vol 3135 (1) ◽  
pp. 35 ◽  
Author(s):  
NATASHA PICCIANI ◽  
DÉBORA O. PIRES ◽  
HÉLIO R. SILVA

Caryophylliidae Dana, 1846 and Dendrophylliidae Gray, 1847 are families of widespread hard corals (order Scleractinia) composed mainly of azooxanthellate corals. A growing body of molecular data has provided new insights on hard-coral evolution, suggesting that many of the traditionally recognized families are not monophyletic. The morphology of the skeletal parts has been the only source of evidence for the taxonomy of the group for many years. Soft anatomy has been less explored, and recently, with the increased use of molecular evidence, anatomical studies have decreased in importance. As a result, for many taxa, we know little or nothing about variation in soft tissue morphology and their use for systematics has never been explored. In this study we examined the cnidocysts of two species of caryophylliids and of four dendrophylliids, and synthesized previous studies on the subject. We performed a morphological phylogenetic analysis, based on eight informative characters, which includes eight species of dendrophylliids and 11 caryophylliid taxa. Five taxa belonging to the families Poritidae, Flabellidae, and Fungiacyathidae were also scored for these morphological characters. The aims were to investigate the diversity of cnidocysts in members of the two families and test the monophyly of Dendrophylliidae. The data support a dendrophylliid clade and indicate the presence of b-rhabdoids (1) in mesenterial filaments as a synapomorphy of the family. The taxonomic distribution of two other characters contradicts the clade (Dendrophylliidae + Poritidae) suggested by molecular analyses. Our results reinforce the relevance of soft tissue studies in hard-corals to reconstructing their phylogeny.


Phytotaxa ◽  
2019 ◽  
Vol 391 (5) ◽  
pp. 277 ◽  
Author(s):  
SALILAPORN NUANKAEW ◽  
SATINEE SUETRONG ◽  
TUKSADON WUTIKHUN ◽  
UMPAWA PINRUAN

A new species of a hyphomycetous fungus, Hermatomyces trangensis, was collected during an investigation of the diversity of palm fungi in Na Yong district, Trang province, Southern Thailand, and is introduced in this paper based on morphological and molecular evidence. The fungus is characterized by the production of only one type of conidia, globose or subglobose in front view, broadly ellipsoidal or oblong in lateral view, with dark brown to black central cells and subhyaline to pale brown peripheral cells and sporulation in culture. Phylogenetic analyses of combined SSU rDNA, LSU rDNA, ITS rDNA, TEF1 and RPB2 sequence data using maximum parsimony, maximum likelihood and Bayesian inference approaches placed the fungus within a strongly supported clade with other Hermatomyces species within the family Hermatomycetaceae (Pleosporales, Dothideomycetes). Morphologically, it is similar to other taxa with only one type of conidia such as H. sphaericus, H. sphaericoides and H. verrucosus but molecular data clearly support H. trangensis as distinct from those species.


2007 ◽  
Vol 76 (2) ◽  
pp. 95-102 ◽  
Author(s):  
Dirk Erpenbeck ◽  
John N.A. Hooper ◽  
Sue E. List-Armitage ◽  
Bernard M. Degnan ◽  
Gert Wörheide ◽  
...  

This is the second part of a revision and re-classification of the demosponge family Sollasellidae, and an example of a successful use of combined morphological and molecular data. Sollasella had been a poorly known, long forgotten taxon, placed incertae sedis in the order Hadromerida in the last major revision of the demosponges. It has recently been suggested to belong to Raspailiidae in the order Poecilosclerida due to striking morphological similarities. The present analysis verified this re-classification using molecular markers. Comparing 28S rDNA fragments of Sollasella cervicornis, a newly described species S. moretonensis and a representative set of raspailiid and hadromerid samples. In our analyses Sollasella clearly clusters inside the Raspailiidae clade, and distantly from hadromerid taxa. Supporting morphological hypothesis of Van Soest et al. (2006), that Sollasella is a raspailiid sponge.


Zootaxa ◽  
2021 ◽  
Vol 4949 (1) ◽  
pp. 1-23
Author(s):  
PETER S. CRANSTON ◽  
MATT KROSCH ◽  
ANDREW M. BAKER

The diversity and endemism of Australian Tanypodinae (Diptera: Chironomidae) has been unclear from morphological comparisons with well-grounded northern hemisphere taxonomy. As part of a comprehensive study, here we focus on one of the few described endemic genera, Yarrhpelopia Cranston. Extensive and intensive new sampling and newly-acquired molecular data provides clarity for the type species, Yarrhpelopia norrisi Cranston and allows recognition of congeners and potential sister group(s). We describe Yarrhpelopia acorona Cranston & Krosch sp. n., and we recognise a third species from Western Australia, retaining an informal code ‘V20’ due to inadequate reared / associated material for formal description. We recognise a robust clade Coronapelopia Cranston & Krosch gen. n., treated as a genus new to science for two new species, Coronapelopia valedon Cranston & Krosch sp. n. and Coronapelopia quadridentata Cranston & Krosch sp. n., from eastern Australia, each described in their larval and pupal stages and partial imaginal stages. Interleaved between the independent new Australian clades Yarrhpelopia and Coronapelopia are New World Pentaneura and relatives, that allow a tentative inference of a dated gondwanan (austral) connection. Expanded sampling indicates that Y. norrisi, although near predictably present in mine-polluted waters, is not obligate but generally indicates acidic waters, including natural swamps and Sphagnum bogs. The inferred acidophily, including in drainages of mine adits, applies to many taxa under consideration here. 


2015 ◽  
Author(s):  
Rosa Fernandez ◽  
Gregory D Edgecombe ◽  
Gonzalo Giribet

Myriapods are one of the dominant terrestrial arthropod groups including the diverse and familiar centipedes and millipedes. Although molecular evidence has shown that Myriapoda is monophyletic, its internal phylogeny remains contentious and understudied, especially when compared to those of Chelicerata and Hexapoda. Until now, efforts have focused on taxon sampling (e.g., by including a handful of genes in many species) or on maximizing matrix occupancy (e.g., by including hundreds or thousands of genes in just a few species), but a phylogeny maximizing sampling at both levels remains elusive. In this study, we analyzed forty Illumina transcriptomes representing three myriapod classes (Diplopoda, Chilopoda and Symphyla); twenty-five transcriptomes were newly sequenced to maximize representation at the ordinal level in Diplopoda and at the family level in Chilopoda. Eight supermatrices were constructed to explore the effect of several potential phylogenetic biases (e.g., rate of evolution, heterotachy) at three levels of mean gene occupancy per taxon (50%, 75% and 90%). Analyses based on maximum likelihood and Bayesian mixture models retrieved monophyly of each myriapod class, and resulted in two alternative phylogenetic positions for Symphyla, as sister group to Diplopoda + Chilopoda, or closer to Diplopoda, the latter hypothesis having been traditionally supported by morphology. Within centipedes, all orders were well supported, but two nodes remained in conflict in the different analyses despite dense taxon sampling at the family level, situating the order Scolopendromorpha as sister group to a morphologically-anomalous grouping of Lithobiomorpha + Geophilomorpha in a subset of analyses. Interestingly, this anomalous result was obtained for all analyses conducted with the most complete matrix (90% of occupancy), being at odds not only with the sparser but more gene-rich supermatrices (75% and 50% supermatrices) or with the matrices optimizing phylogenegic informativeness and the most conserved genes, but also with previous hypotheses based on morphology, development or other molecular data sets. We discuss the implications of these findings in the context of the ever more prevalent quest for completeness in phylogenomic studies.


Sign in / Sign up

Export Citation Format

Share Document