scholarly journals Birds are islands for parasites

2014 ◽  
Vol 10 (8) ◽  
pp. 20140255 ◽  
Author(s):  
Jennifer A. H. Koop ◽  
Karen E. DeMatteo ◽  
Patricia G. Parker ◽  
Noah K. Whiteman

Understanding the mechanisms driving the extraordinary diversification of parasites is a major challenge in evolutionary biology. Co-speciation, one proposed mechanism that could contribute to this diversity is hypothesized to result from allopatric co-divergence of host–parasite populations. We found that island populations of the Galápagos hawk ( Buteo galapagoensis ) and a parasitic feather louse species ( Degeeriella regalis ) exhibit patterns of co-divergence across variable temporal and spatial scales. Hawks and lice showed nearly identical population genetic structure across the Galápagos Islands. Hawk population genetic structure is explained by isolation by distance among islands. Louse population structure is best explained by hawk population structure, rather than isolation by distance per se , suggesting that lice tightly track the recent population histories of their hosts. Among hawk individuals, louse populations were also highly structured, suggesting that hosts serve as islands for parasites from an evolutionary perspective. Altogether, we found that host and parasite populations may have responded in the same manner to geographical isolation across spatial scales. Allopatric co-divergence is likely one important mechanism driving the diversification of parasites.

2014 ◽  
Vol 1 (3) ◽  
pp. 140175 ◽  
Author(s):  
Chrysoula Gubili ◽  
David W. Sims ◽  
Ana Veríssimo ◽  
Paolo Domenici ◽  
Jim Ellis ◽  
...  

Elasmobranchs represent important components of marine ecosystems, but they can be vulnerable to overexploitation. This has driven investigations into the population genetic structure of large-bodied pelagic sharks, but relatively little is known of population structure in smaller demersal taxa, which are perhaps more representative of the biodiversity of the group. This study explores spatial population genetic structure of the small-spotted catshark ( Scyliorhinus canicula ), across European seas. The results show significant genetic differences among most of the Mediterranean sample collections, but no significant structure among Atlantic shelf areas. The data suggest the Mediterranean populations are likely to have persisted in a stable and structured environment during Pleistocene sea-level changes. Conversely, the Northeast Atlantic populations would have experienced major changes in habitat availability during glacial cycles, driving patterns of population reduction and expansion. The data also provide evidence of male-biased dispersal and female philopatry over large spatial scales, implying complex sex-determined differences in the behaviour of elasmobranchs. On the basis of this evidence, we suggest that patterns of connectivity are determined by trends of past habitat stability that provides opportunity for local adaptation in species exhibiting philopatric behaviour, implying that resilience of populations to fisheries and other stressors may differ across the range of species.


Nematology ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 165-177 ◽  
Author(s):  
Rasha Haj Nuaima ◽  
Johannes Roeb ◽  
Johannes Hallmann ◽  
Matthias Daub ◽  
Holger Heuer

Summary Characterising the non-neutral genetic variation within and among populations of plant-parasitic nematodes is essential to determine factors shaping the population genetic structure. This study describes the genetic variation of the parasitism gene vap1 within and among geographic populations of the beet cyst nematode Heterodera schachtii. Forty populations of H. schachtii were sampled at four spatial scales: 695 km, 49 km, 3.1 km and 0.24 km. DGGE fingerprinting showed significant differences in vap1 patterns among populations. High similarity of vap1 patterns appeared between geographically close populations, and occasionally among distant populations. Analysis of spatially sampled populations within fields revealed an effect of tillage direction on the vap1 similarity for two of four studied fields. Overall, geographic distance and similarity of vap1 patterns of H. schachtii populations were negatively correlated. In conclusion, the population genetic structure was shaped by the interplay between the genetic adaptation and the passive transport of this nematode.


2020 ◽  
Vol 13 ◽  
pp. 194008292094917
Author(s):  
Misael D. Mancilla-Morales ◽  
Santiago Romero-Fernández ◽  
Araceli Contreras-Rodríguez ◽  
José J. Flores-Martínez ◽  
Víctor Sánchez-Cordero ◽  
...  

Estimations on the influence of evolutionary and ecological forces as drivers of population gene diversity and genetic structure have been performed on a growing number of colonial seabirds, but many remain poorly studied. In particular, the population genetic structure of storm-petrels (Hydrobatidae) has been evaluated in only a few of the 24 recognized species. We assessed the genetic diversity and population structure of the Black Storm-Petrel ( Hydrobates melania) and the Least Storm-Petrel ( Hydrobates microsoma) in the Gulf of California. The two species were selected because they are pelagic seabirds with comparable ecological traits and breeding grounds. Recent threats such as introduced species of predators and human disturbance have resulted in a decline of many insular vertebrate populations in this region and affected many different aspects of their life histories (ranging from reproductive success to mate selection), with a concomitant loss of genetic diversity. To elucidate to what extent the population genetic structure occurs in H. melania and H. microsoma, we used 719 base pairs from the mitochondrial cytochrome oxidase c subunit I gene. The evaluation of their molecular diversity, genetic structure, and gene flow were performed through diversity indices, analyses of molecular and spatial variance, and isolation by distance (IBD) across sampling sites, respectively. The population genetic structure (via AMOVA and SAMOVA) and isolation by distance (pairwise p-distances and FST/1– FST (using ΦST) were inferred for H. microsoma. However, for H. melania evidence was inconclusive. We discuss explanations leading to divergent population genetic structure signatures in these species, and the consequences for their conservation.


2014 ◽  
Vol 51 (4) ◽  
pp. 309-317 ◽  
Author(s):  
O. Zhigileva ◽  
V. Ozhireľev ◽  
T. Stepanova ◽  
T. Moiseenko

AbstractGenetic variability of West Siberian populations of Opisthorchis felineus and two species of cyprinid fish, its second intermediate hosts, was studied by isozyme analysis. Low levels of allozyme variation and genetic differentiation in O. felineus from the Ob-Irtysh focus of opisthorchiasis were detected. The proportion of polymorphic loci was 21.1 %, the average observed heterozygosity (Hobs) was 0.008, and expected heterozygosity (Hexp) was 0.052. For most loci in O. felineus deficit of heterozygotes (FIS = 0.7424) was observed. A comparison of population genetic structure of fish and parasites showed they were not congruent. Estimates of genetic differentiation of the parasite were smaller than for the fish — its intermediate host. Migration and population structure of the second intermediate hosts do not play an important role in formation of the population-genetic structure of O. felineus in the Ob-Irtysh focus of opisthorchiasis.


Heredity ◽  
2014 ◽  
Vol 113 (5) ◽  
pp. 408-415 ◽  
Author(s):  
A R Van Oosten ◽  
D J A Heylen ◽  
K Jordaens ◽  
T Backeljau ◽  
E Matthysen

Botany ◽  
2009 ◽  
Vol 87 (11) ◽  
pp. 1089-1095 ◽  
Author(s):  
Stephen B. Heard ◽  
Linley K. Jesson ◽  
Kirby Tulk

The Gulf of St. Lawrence aster ( Symphyotrichum laurentianum (Fernald) G.L. Nesom) is an endemic annual of saline habitats in the southern Gulf of St. Lawrence. It is listed as a threatened species, and has recently experienced population declines in much of its range. We used 11 allozyme markers to assay population genetic variation in six wild populations of S. laurentianum from the Magdalen Islands, Quebec (QC), the only remaining wild population from Prince Edward Island National Park (PEI), and a greenhouse population founded in 1999 with seed collected from PEI. Symphyotrichum laurentianum harbours moderate genetic diversity (Ps = 0.36, As = 1.54), with only modest spatial genetic structure (pairwise FST < 0.15) and no significant isolation by distance. The PEI population had greatly reduced allelic diversity compared with the populations from the Magdalen Islands, which likely act as a reservoir of genetic variation in S. laurentianum. Recent loss of alleles during population decline in PEI is suggested by the retention of greater allelic diversity in the greenhouse population. Estimates of breeding structure suggest small but nonzero rates of outcross pollination (FIS = 0.73, 95% CI = 0.48–0.97; outcrossing rate ∼16%). Population genetic structure in S. laurentianum can inform those forming and carrying out conservation and recovery plans for this threatened species.


2020 ◽  
Author(s):  
William S. Pearman ◽  
Sarah J. Wells ◽  
Olin K. Silander ◽  
Nikki E. Freed ◽  
James Dale

AbstractMarine organisms generally exhibit one of two developmental modes: biphasic, with distinct adult and larval morphology, and direct development, in which larvae resemble adults. Developmental mode is thought to significantly influence dispersal, with direct developers expected to have much lower dispersal potential. However, in contrast to our relatively good understanding of dispersal and population connectivity for biphasic species, comparatively little is known about direct developers. In this study, we use a panel of 8,020 SNPs to investigate population structure and gene flow for a direct developing species, the New Zealand endemic marine isopod Isocladus armatus. On a small spatial scale (20 kms), gene flow between locations is extremely high and suggests an island model of migration. However, over larger spatial scales (600km), populations exhibit a clear pattern of isolation-by-distance. Because our sampling range is intersected by two well-known biogeographic barriers (the East Cape and the Cook Strait), our study provides an opportunity to understand how such barriers influence dispersal in direct developers. Our results indicate that I. armatus exhibits significant migration across these barriers, and suggests that ocean currents associated with these locations do not present a barrier to dispersal. Interestingly, we do find evidence of a north-south population genetic break occurring between Māhia and Wellington, two locations where there are no obvious biogeographic barriers between them. We conclude that developmental life history largely predicts dispersal in intertidal marine isopods. However, localised biogeographic processes can disrupt this expectation.


2018 ◽  
Vol 63 (No. 11) ◽  
pp. 462-472
Author(s):  
Anna Stachurska ◽  
Antoni Brodacki ◽  
Marta Liss

The objective of this study was to estimate the frequencies of alleles which produce coat colour in Polish Coldblood horse population, and to verify the hypothesis that coat colour is not considered in its selection. The analysis included 35 928 horses and their parents having been registered in the studbook over a half-century. Allele frequencies in Agouti (A), Extension (E), Dun (D), Roan (Rn), and Grey (G) loci, in parental and offspring generations, were estimated according to test matings and the square root of recessive phenotype frequency. The population structure is in Hardy–Weinberg equilibrium only at E locus and coat colour is regarded by breeders. Black horses are favoured. Higher E locus homozygosity in blacks than in bays makes it easier to obtain black foals. Dun-diluted, roan and grey coat colours are undesirable and the population has come to consist almost uniformly of basic coat colours. These results show the importance of studies on population genetic structure, which despite no formal criteria for breeding for colour, can considerably change through generations.


2011 ◽  
Vol 62 (1) ◽  
pp. 1 ◽  
Author(s):  
M. C. Sabando ◽  
I. Vila ◽  
R. Peñaloza ◽  
D. Véliz

Dispersal and many other factors affect population genetic structure. In central Chile, rivers are characterised by strong currents and transverse mountain chains, which impose physical barriers to the populations that inhabit them. The objective of the present study was to study the population genetic structure of two widespread species of aquatic insects, the caddisfly Smicridea annulicornis and the mayfly Andesiops torrens, in three isolated rivers, Choapa, Maipo and Maule. The analysis of population structure, using both mtDNA (cytochrome C oxidase subunit 1, COI) and nuclear markers (amplified fragment length polymorphism, AFLP), considered samples from within and among rivers. In S. annulicornis, we found differentiation within and among rivers, indicating a low dispersal among the study area. Populations of A. torrens shared haplotypes in all three rivers and no differences were found among rivers, indicating that this species probably has more dispersal potential than does S. annulicornis; however, significant differences were observed within rivers. Our results indicate that the transverse mountain chains are not a barrier for A. torrens, which can disperse among rivers. Within rivers, the population structure suggests that these species are probably adapted to avoid drift because of the torrential character of these Chilean rivers.


Sign in / Sign up

Export Citation Format

Share Document