Population genetic structure of the Gulf of St. Lawrence aster, Symphyotrichum laurentianum (Asteraceae), a threatened coastal endemic

Botany ◽  
2009 ◽  
Vol 87 (11) ◽  
pp. 1089-1095 ◽  
Author(s):  
Stephen B. Heard ◽  
Linley K. Jesson ◽  
Kirby Tulk

The Gulf of St. Lawrence aster ( Symphyotrichum laurentianum (Fernald) G.L. Nesom) is an endemic annual of saline habitats in the southern Gulf of St. Lawrence. It is listed as a threatened species, and has recently experienced population declines in much of its range. We used 11 allozyme markers to assay population genetic variation in six wild populations of S. laurentianum from the Magdalen Islands, Quebec (QC), the only remaining wild population from Prince Edward Island National Park (PEI), and a greenhouse population founded in 1999 with seed collected from PEI. Symphyotrichum laurentianum harbours moderate genetic diversity (Ps = 0.36, As = 1.54), with only modest spatial genetic structure (pairwise FST < 0.15) and no significant isolation by distance. The PEI population had greatly reduced allelic diversity compared with the populations from the Magdalen Islands, which likely act as a reservoir of genetic variation in S. laurentianum. Recent loss of alleles during population decline in PEI is suggested by the retention of greater allelic diversity in the greenhouse population. Estimates of breeding structure suggest small but nonzero rates of outcross pollination (FIS = 0.73, 95% CI = 0.48–0.97; outcrossing rate ∼16%). Population genetic structure in S. laurentianum can inform those forming and carrying out conservation and recovery plans for this threatened species.

2017 ◽  
Vol 68 (10) ◽  
pp. 1901 ◽  
Author(s):  
Samantha J. Nowland ◽  
Paul C. Southgate ◽  
Rose K. Basiita ◽  
Dean R. Jerry

The development of a sandfish (Holothuria scabra) mariculture industry within Papua New Guinea (PNG) is of great socio-economic importance. However, the lack of knowledge surrounding the current population genetic structure throughout the region has raised concern about the genetic impacts of hatchery-augmented sea ranching on already diminished wild populations. The present study evaluated the current population genetic structure of sandfish within PNG, and more broadly across northern Australia, to inform sustainable mariculture practices and provide baseline genetic data within these regions. Microsatellite-based population genetic analyses were used to determine the genetic diversity within subpopulations. This analysis found that although microsatellite loci varied widely in the number of alleles (3–28), the overall allelic diversity was similar among all populations sampled. The level of genetic substructuring among all populations sampled was low, although significant (FST=0.037, P=0.000). Most of these differences were driven by distinctness of the Australian populations from those in PNG, whereby results indicated that PNG populations exhibited a panmictic stock structure. No distinct patterns of genetic isolation by distance were detected among the populations examined. Information obtained from the present study will improve the management of restocking programs and support a sustainable future for the PNG sandfish mariculture industry.


Nematology ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 165-177 ◽  
Author(s):  
Rasha Haj Nuaima ◽  
Johannes Roeb ◽  
Johannes Hallmann ◽  
Matthias Daub ◽  
Holger Heuer

Summary Characterising the non-neutral genetic variation within and among populations of plant-parasitic nematodes is essential to determine factors shaping the population genetic structure. This study describes the genetic variation of the parasitism gene vap1 within and among geographic populations of the beet cyst nematode Heterodera schachtii. Forty populations of H. schachtii were sampled at four spatial scales: 695 km, 49 km, 3.1 km and 0.24 km. DGGE fingerprinting showed significant differences in vap1 patterns among populations. High similarity of vap1 patterns appeared between geographically close populations, and occasionally among distant populations. Analysis of spatially sampled populations within fields revealed an effect of tillage direction on the vap1 similarity for two of four studied fields. Overall, geographic distance and similarity of vap1 patterns of H. schachtii populations were negatively correlated. In conclusion, the population genetic structure was shaped by the interplay between the genetic adaptation and the passive transport of this nematode.


2014 ◽  
Vol 11 (22) ◽  
pp. 6495-6507 ◽  
Author(s):  
S. H. Árnason ◽  
Ǽ. Th. Thórsson ◽  
B. Magnússon ◽  
M. Philipp ◽  
H. Adsersen ◽  
...  

Abstract. Sea sandwort (Honckenya peploides) was one of the first plants to successfully colonize and reproduce on the volcanic island Surtsey, formed in 1963 off the southern coast of Iceland. Using amplified fragment length polymorphic (AFLP) markers, we examined levels of genetic variation and differentiation among populations of H. peploides on Surtsey in relation to populations on the nearby island Heimaey and from the southern coast of Iceland. Selected populations from Denmark and Greenland were used for comparison. In addition, we tested whether the effects of isolation by distance could be seen in the Surtsey populations. Using two primer combinations, we obtained 173 AFLP markers from a total of 347 plant samples. The resulting binary matrix was then analysed statistically. The main results include the following: (i) Surtsey had the highest proportion of polymorphic markers as well as a comparatively high genetic diversity (55.5% proportion of polymorphic loci, PLP; 0.1974 HE) and Denmark the lowest (31.8% PLP; 0.132 HE), indicating rapid expansion during an early stage of population establishment on Surtsey and/or multiple origins of immigrants; (ii) the total genetic differentiation (FST) among Surtsey (0.0714) and Heimaey (0.055) populations was less than half of that found among the mainland populations in Iceland (0.1747), indicating substantial gene flow on the islands; (iii) most of the genetic variation (79%, p < 0.001) was found within localities, possibly due to the outcrossing and subdioecious nature of the species; (iv) a significant genetic distance was found within Surtsey, among sites, and this appeared to correlate with the age of plant colonization; and (v) the genetic structure analysis indicated multiple colonization episodes on Surtsey, whereby H. peploides most likely immigrated from the nearby island of Heimaey and directly from the southern coast of Iceland.


2020 ◽  
Vol 13 ◽  
pp. 194008292094917
Author(s):  
Misael D. Mancilla-Morales ◽  
Santiago Romero-Fernández ◽  
Araceli Contreras-Rodríguez ◽  
José J. Flores-Martínez ◽  
Víctor Sánchez-Cordero ◽  
...  

Estimations on the influence of evolutionary and ecological forces as drivers of population gene diversity and genetic structure have been performed on a growing number of colonial seabirds, but many remain poorly studied. In particular, the population genetic structure of storm-petrels (Hydrobatidae) has been evaluated in only a few of the 24 recognized species. We assessed the genetic diversity and population structure of the Black Storm-Petrel ( Hydrobates melania) and the Least Storm-Petrel ( Hydrobates microsoma) in the Gulf of California. The two species were selected because they are pelagic seabirds with comparable ecological traits and breeding grounds. Recent threats such as introduced species of predators and human disturbance have resulted in a decline of many insular vertebrate populations in this region and affected many different aspects of their life histories (ranging from reproductive success to mate selection), with a concomitant loss of genetic diversity. To elucidate to what extent the population genetic structure occurs in H. melania and H. microsoma, we used 719 base pairs from the mitochondrial cytochrome oxidase c subunit I gene. The evaluation of their molecular diversity, genetic structure, and gene flow were performed through diversity indices, analyses of molecular and spatial variance, and isolation by distance (IBD) across sampling sites, respectively. The population genetic structure (via AMOVA and SAMOVA) and isolation by distance (pairwise p-distances and FST/1– FST (using ΦST) were inferred for H. microsoma. However, for H. melania evidence was inconclusive. We discuss explanations leading to divergent population genetic structure signatures in these species, and the consequences for their conservation.


Heredity ◽  
2020 ◽  
Vol 126 (1) ◽  
pp. 63-76
Author(s):  
Sarah M. Griffiths ◽  
Mark J. Butler ◽  
Donald C. Behringer ◽  
Thierry Pérez ◽  
Richard F. Preziosi

AbstractUnderstanding population genetic structure can help us to infer dispersal patterns, predict population resilience and design effective management strategies. For sessile species with limited dispersal, this is especially pertinent because genetic diversity and connectivity are key aspects of their resilience to environmental stressors. Here, we describe the population structure of Ircinia campana, a common Caribbean sponge subject to mass mortalities and disease. Microsatellites were used to genotype 440 individuals from 19 sites throughout the Greater Caribbean. We found strong genetic structure across the region, and significant isolation by distance across the Lesser Antilles, highlighting the influence of limited larval dispersal. We also observed spatial genetic structure patterns congruent with oceanography. This includes evidence of connectivity between sponges in the Florida Keys and the southeast coast of the United States (>700 km away) where the oceanographic environment is dominated by the strong Florida Current. Conversely, the population in southern Belize was strongly differentiated from all other sites, consistent with the presence of dispersal-limiting oceanographic features, including the Gulf of Honduras gyre. At smaller spatial scales (<100 km), sites showed heterogeneous patterns of low-level but significant genetic differentiation (chaotic genetic patchiness), indicative of temporal variability in recruitment or local selective pressures. Genetic diversity was similar across sites, but there was evidence of a genetic bottleneck at one site in Florida where past mass mortalities have occurred. These findings underscore the relationship between regional oceanography and weak larval dispersal in explaining population genetic patterns, and could inform conservation management of the species.


The Condor ◽  
2006 ◽  
Vol 108 (2) ◽  
pp. 440-445 ◽  
Author(s):  
Kathryn P. Huyvaert ◽  
Patricia G. Parker

Abstract We used four variable microsatellite loci to examine the distribution of genetic variation and degree of genetic structuring among three subcolonies of Waved Albatrosses (Phoebastria irrorata). The breeding population of this species is almost entirely limited to the island of Española in the Galápagos Archipelago. Such strong philopatry could lead to population genetic structure among subcolonies on the island. Pairwise values of the FST analog, θ, calculated from microsatellite genotypes, were all less than 0.012, indicating little genetic differentiation and the presence of gene flow throughout the population.


2001 ◽  
Vol 79 (2) ◽  
pp. 285-295 ◽  
Author(s):  
Catherine A Mossman ◽  
Peter M Waser

Habitat fragmentation may have significant consequences for population genetic structure because geographic distance and physical barriers may impede gene flow. In this study, we investigated whether habitat fragmentation affects fine-scale genetic structure of populations of the white-footed mouse (Peromyscus leucopus). We studied 27 populations of P. leucopus, 17 in continuous forest and 10 in isolated woodlots. Populations were trapped in pairs that were either 500 or 2000 m apart. We estimated genetic variation at eight P. leucopus specific microsatellite DNA loci. We discovered significant genetic variation within all populations, but no significant differences in numbers of alleles or heterozygosity between populations. For given population pairs, we found significant genetic differentiation even at very short distances, based on multilocus FST estimates. The amount of genetic differentiation between population pairs was similar in the two habitats. Distance had a marginal effect on genetic differentiation when comparing paired populations separated by 2000 m with those separated by 500 m. However, at a larger geographic scale, there was no evidence of isolation by distance. This study confirms that microsatellite-based studies have the potential to detect interpopulation differentiation at an extremely local scale, and suggests that habitat fragmentation has surprisingly few effects on P. leucopus genetic structure.


2014 ◽  
Vol 10 (8) ◽  
pp. 20140255 ◽  
Author(s):  
Jennifer A. H. Koop ◽  
Karen E. DeMatteo ◽  
Patricia G. Parker ◽  
Noah K. Whiteman

Understanding the mechanisms driving the extraordinary diversification of parasites is a major challenge in evolutionary biology. Co-speciation, one proposed mechanism that could contribute to this diversity is hypothesized to result from allopatric co-divergence of host–parasite populations. We found that island populations of the Galápagos hawk ( Buteo galapagoensis ) and a parasitic feather louse species ( Degeeriella regalis ) exhibit patterns of co-divergence across variable temporal and spatial scales. Hawks and lice showed nearly identical population genetic structure across the Galápagos Islands. Hawk population genetic structure is explained by isolation by distance among islands. Louse population structure is best explained by hawk population structure, rather than isolation by distance per se , suggesting that lice tightly track the recent population histories of their hosts. Among hawk individuals, louse populations were also highly structured, suggesting that hosts serve as islands for parasites from an evolutionary perspective. Altogether, we found that host and parasite populations may have responded in the same manner to geographical isolation across spatial scales. Allopatric co-divergence is likely one important mechanism driving the diversification of parasites.


1988 ◽  
Vol 36 (3) ◽  
pp. 273 ◽  
Author(s):  
DJ Coates

There are 10 known populations of Acacia anomala occurring in two small disjunct groups some 30 km apart. The Chittering populations reproduce sexually whereas the Kalamunda populations appear to reproduce almost exclusively by vegetative multiplication. The level and distribution of genetic variation were studied at 15 allozyme loci. Two loci were monomorphic in all populations. In the Chittering populations the mean number of alleles per locus was 2.0 and the expected panmictic heterozygosity (genetic diversity) 0.209. In the Kalamunda populations the mean number of alleles per locus was 1.15 and the expected panmictic heterozygosity 0.079, although the observed heterozygosity of 0.150 was only marginally less than the Chittering populations (0.177). These data support the contention that the Chittering populations are primarily outcrossing whereas the Kalamunda populations are clonal, with each population consisting of individuals with identical and, in three of the four populations, heterozygous, multilocus genotypes. The level of genetic diversity within the Chittering populations is high for plants in general even though most populations are relatively smsll and isolated. It is proposed that either the length of time these populations have been reduced in size and isolated is insufficient for genetic diversity to be reduced or the genetic system of this species is adapted to small population conditions. Strategies for the adequate conservation of the genetic resources of Acacia anomala are discussed.


Sign in / Sign up

Export Citation Format

Share Document